Skip to main content

Advertisement

Log in

Aluminum Deoxidation Equilibria in Liquid Iron: Part III—Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O System

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Deoxidation equilibria in high-Mn- and high-Al-alloyed liquid steels were studied over the entire Fe-Mn-Al composition range by both experiments and thermodynamic modeling. Effect of Mn on the Al deoxidation equilibria in liquid iron was measured by the different experimental techniques depending on the Al content. In order to confirm the reproducibility of the experimental results, the deoxidation experiments were carried out reversibly from high oxygen state by addition of Al as a deoxidizer, and from low oxygen state by addition of Fe2O3 or MnO as an oxygen source. For the Al-rich side, CaO flux was added on top of liquid iron in order to remove suspended Al2O3 inclusions in the melt. Based on the present experimental result and available critically evaluated literature data, the Al deoxidation equilibria in Fe-Mn-Al-O liquid alloy were thermodynamically modeled. The Modified Quasichemical Model was used in order to take into account a strong short-range ordering of atoms in molten state. Deoxidation equilibria and inclusion stability diagram for entire Fe-Mn-Al melt were successfully reproduced by the present model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Kim and one of the present authors (YBK) recently reported a thermodynamic optimization in the Fe-Mn-Al system[18] using the same thermodynamic modeling approach where they used a revised version of ΔgAlMn without any ternary parameter for the liquid phase, in order to obtain good agreement with alloy phase equilibria in the Fe-Mn-Al-C system.[19] Nevertheless, the deoxidation equilibria reported in the present study were not affected by the choice of ΔgAlMn and the ternary parameter.

References

  1. O.J. Kwon: Proceedings of 1st International Conference on High Manganese Steels, Yonsei University, Seoul, Korea, 2011, p. 40.

  2. C. Wagner: Thermodynamics of Alloys, Addision-Wesley Press, Cambridge, MA, 1952, pp. 47-51.

    Google Scholar 

  3. M. K. Paek, J. M. Jang, Y. -B. Kang, and J. J. Pak: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 1826-36.

    Article  Google Scholar 

  4. 4. M. K. Paek, J. J. Pak, and Y. -B. Kang: Metall. Mater. Trans. B, 2015, vol. 46B, pp. 2224-33.

    Article  Google Scholar 

  5. 5. A.D. Pelton, S.A. Degterov, G. Eriksson, C. Robelin, and Y. Dessureault: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 651-9.

    Article  Google Scholar 

  6. 6. A.D. Pelton and P. Chartrand: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1355-60.

    Article  Google Scholar 

  7. 7. S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66, pp. 87-92.

    Google Scholar 

  8. 8. Y. Ogasawara, T. Miki, and T. Nagasaka: CAMP-ISIJ, 2012, vol. 25, p. 240.

    Google Scholar 

  9. 9. J. H. Park, D. J. Kim, and D. J. Min: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 2316-24.

    Article  Google Scholar 

  10. 10. W. Huang: Calphad, 1989, vol. 13, pp. 243-52.

    Article  Google Scholar 

  11. 11. A. Shukla and A. D. Pelton: J. Phase Equilib. Diff., 2009, vol. 30, 28-39.

    Article  Google Scholar 

  12. 12. C. W. Bale, E. Bélisle, P. Chartrand, S. A. Decterov, G. Eriksson, K. Hack, I. H. Jung, Y. -B. Kang, J. Melançon, A. D. Pelton, C. Robelin, and S. Petersen: Calphad, 2009, vol. 33, pp. 295-311.

    Article  Google Scholar 

  13. M.K. Paek, S. Chatterjee, J.J. Pak, and I.H. Jung: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 1243-62.

    Article  Google Scholar 

  14. 14. A.T. Dinsdale: Calphad, 1991, vol. 15, pp. 317-425.

    Article  Google Scholar 

  15. 15. G. Eriksson and A. D. Pelton: Metall. Mater. Trans. B, 1993, vol. 24B, pp. 807-16.

    Article  Google Scholar 

  16. 16. S. A. Decterov, E. Jak, P. C. Hayes, and A. D. Pelton: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 643-57.

    Article  Google Scholar 

  17. 17. S. Chatterjee and I. H. Jung: J. Eur. Ceram. Soc., 2014, vol. 34, pp. 1611-21.

    Article  Google Scholar 

  18. 18. M. -S. Kim and Y. -B. Kang: J. Phase Equilib. Diffus., 2015, vol. 36, pp. 453-70.

    Article  Google Scholar 

  19. 19. M. -S. Kim and Y. -B. Kang: Calphad, 2015, vol. 51, pp. 89-103.

    Article  Google Scholar 

  20. 20. L. E. Rohde, A. Choudhury, and M. Wahlster: Arch. Eisenhüttenwes., 1971, vol. 42, pp. 165-74.

    Google Scholar 

  21. 21. J. H. Swisher: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 123-124.

    Google Scholar 

  22. 22. R. J. Fruehan: Metall. Trans., 1970, vol. 1, pp, 3403-10.

    Article  Google Scholar 

  23. 23. D. Janke and W. A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, 195-8.

    Google Scholar 

  24. 24. V. E. Shevtsov: Russ. Metall., 1981, vol. 1, pp. 52-7.

    Google Scholar 

  25. 25. H. Suito, H. Inoue, and R. Inoue: ISIJ Int., 1991, vol. 31, pp. 1381-8.

    Article  Google Scholar 

  26. 26. S. Dimitrov, A. Weyl, and D. Janke: Steel Res., 1995, vol. 66, pp. 3-7.

    Google Scholar 

  27. 27. J. D. Seo, S.H. Kim, and K.R. Lee: Steel Res., 1998, vol. 69, pp. 49-53.

    Google Scholar 

  28. 28. Y. J. Kang, M. Thunman, D. Sichen, T. Morohoshi, K. Mizukami, and K. Morita: ISIJ Int., 2009, vol. 49, pp. 1483-9.

    Article  Google Scholar 

  29. 29. I. H. Jung, S. A. Decterov, and A. D. Pelton: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 493-507.

    Article  Google Scholar 

  30. 30. A. T. Phan, M. K. Paek, and Y. B. Kang: Acta Mater., 2014, vol. 79, pp. 1-15.

    Article  Google Scholar 

  31. 31. G. I. Batalin, T. P. Bondarenko, and V. S. Sunavtsova: Dopov. Nat. Akad. Nauk. Ukr., 1985, vol. 4, pp. 76-8.

    Google Scholar 

  32. 32. B. B. Lindahl and M. Selleby: Calphad, 2013, vol. 43, pp. 86-93.

    Article  Google Scholar 

  33. 33. B. Sundman, I. Ohnuma, N. Dupin, U. R. Kattner, and S. G. Fries: Acta Mater., 2009, vol. 57, pp. 2896-908.

    Article  Google Scholar 

  34. 34. Y. Du, J. Wang, and J. Zhao, J. C. Schuster, F. Weitzer, R. Schimid-Fetzer, M. Ohno, H. Xu, Z. K. Liu, S. Shang, and W. Zhang: Int. J. Mater. Res., 2007, vol. 98, pp. 855-71.

    Article  Google Scholar 

  35. 35. H. Schenck, M. G. Frohberg, and R. Nünninghoff: Arch. Eisenhüttenwes., 1964, vol. 35, 269-77.

    Google Scholar 

  36. 36. Q. Chen: Acta Metall. Sinica, 1988, vol. 24, pp. 440-1.

    Google Scholar 

  37. 37. A. N. Grundy, B. Hallstedt, and L. J. Gauchler: J. Phase Equilib., 2003, vol. 24, pp. 21-39.

    Google Scholar 

  38. 38. K. T. Jacob: Metall. Mater. Trans. B, 1981, vol. 12B, pp. 675-8.

    Article  Google Scholar 

  39. 39. M. Wang and B. Sundman: Metall. Mater. Trans. B, 1992, vol. 23B, pp. 821-31.

    Article  Google Scholar 

  40. 40. S. Simenov, L. Ivanchev, and D. Popivanov: Izv. Vyssh. Uchebn. Zaved. Chern. Metall., 1990, vol. 11, pp. 20-2.

    Google Scholar 

  41. 41. V. E. Shevtsov, E. E. Merker, and V. P. Luzgin: Izy. Vuzov. Cher. Met., 1987, vol. 9, pp. 4-6.

    Google Scholar 

  42. 42. K. Takahashi and M. Hino: High Temp. Mat. Proc., 2000, vol. 19, pp. 1-10.

    Article  Google Scholar 

  43. 43. D. C. Hilty and W. Crafts: J. Met. Trans. AIME, 1950, vol. 188, pp. 425-36.

    Google Scholar 

  44. 44. J. Chipman, J. B. Gero, and T. B. Winkler: Trans. AIME, 1950, vol. 188, pp. 341-5.

    Google Scholar 

  45. 45. B. V. Linchevskii and A. M. Samarin: Izv. AN SSS. Otd. Tekh. Nauk., 1957, vol. 2, 9-18.

    Google Scholar 

  46. 46. D. Janke and W. A. Fischer: Arch. Eisenhüttenwes., 1976, vol. 47, 147-51. pp. 4-6.

    Google Scholar 

  47. M. Hino, I. Kikuchi, A. Fujisawa, and S. Banya: Proceedings of 6th International Iron Steel Congress, Nagoya, Japan, 1990, vol. 1, pp. 264–71.

  48. The 19th Committee in Steelmaking: Thermodynamic Data for Steelmaking, The Japan Society for Promotion of Science, Tohoku University Press, Sendai, Japan, 2010, pp. 10–13.

  49. 49. K. T. Jacob: Can. Metall. Q., 1981, vol. 20, pp. 89-92.

    Article  Google Scholar 

  50. 50. Y. Zhao, K. Morita, and N. Sano: Metall. Mater. Trans. B, 1995, vol. 26B, pp. 1013-17.

    Article  Google Scholar 

  51. 51. L. M. Lenev and I. A. Novokahtskii: Izv. Akad. Nauk. SSSR Metally, 1966, vol. 3, p. 73-78.

    Google Scholar 

  52. 52. C. K. Kim and A. McLean: Metall. Mater. Trans. B, 1979, vol. 10B, pp. 575-84.

    Article  Google Scholar 

  53. 53. M. Timucin and A. Muan: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1399-406.

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the R&D Center for Valuable Recycling (Global-Top Environmental Technology Development Program) funded by the Ministry of Environment (Project No.: 11-C22-ID).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Jin Pak.

Additional information

Manuscript submitted December 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paek, MK., Do, KH., Kang, YB. et al. Aluminum Deoxidation Equilibria in Liquid Iron: Part III—Experiments and Thermodynamic Modeling of the Fe-Mn-Al-O System. Metall Mater Trans B 47, 2837–2847 (2016). https://doi.org/10.1007/s11663-016-0728-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-016-0728-4

Keywords

Navigation