Skip to main content
Log in

A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper presents a numerical method to investigate the shape of tip and melt rate of an electrode during electroslag remelting process. The interactions between flow, temperature, and electromagnetic fields are taken into account. A dynamic mesh-based approach is employed to model the dynamic formation of the shape of electrode tip. The effect of slag properties such as thermal and electrical conductivities on the melt rate and electrode immersion depth is discussed. The thermal conductivity of slag has a dominant influence on the heat transfer in the system, hence on melt rate of electrode. The melt rate decreases with increasing thermal conductivity of slag. The electrical conductivity of slag governs the electric current path that in turn influences flow and temperature fields. The melting of electrode is a quite unstable process due to the complex interaction between the melt rate, immersion depth, and shape of electrode tip. Therefore, a numerical adaptation of electrode position in the slag has been implemented in order to achieve steady state melting. In fact, the melt rate, immersion depth, and shape of electrode tip are interdependent parameters of process. The generated power in the system is found to be dependent on both immersion depth and shape of electrode tip. In other words, the same amount of power was generated for the systems where the shapes of tip and immersion depth were different. Furthermore, it was observed that the shape of electrode tip is very similar for the systems running with the same ratio of power generation to melt rate. Comparison between simulations and experimental results was made to verify the numerical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Hoyle: Electroslag Processes, Applied Science Publishers, London, 1983.

    Google Scholar 

  2. E. J. Pickering: ISIJ Int., 2013, vol. 53, pp. 935–49.

    Article  Google Scholar 

  3. G. Hoyle: 6th International Vacuum Metallurgy Conference on Special Melting, San Diego, 1979, pp. 624–40.

  4. W. Holzgruber: 5th International Symposium on Electroslag and Other Special Melting Technologies, Pittsburgh, 1974, pp. 70–91.

  5. A. Mitchell: Perspective in Metallurgical Development Conference, Sheffield, England, 1984, pp. 89–98.

  6. F.S. Suarez, J.E. Roberts, and L.D Schley: 5th International Symposium on Electroslag and Other Special Melting Technologies, Pittsburgh, 1974, pp. 126–45.

  7. A. Mitchell: Electric Furnace Steelmaking Conference, ISS, Warrendale, PA, 1985, p. 212.

  8. A. Kharicha, E. Karimi-Sibaki, M. Wu, and A. Ludwig: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 95–99.

  9. D.K. Melgaard, J.J. Beaman, and G.J. Shelmidine: U.S. Patent 7,180,931 B1, 2007.

  10. D.K. Melgaard, G.J. Shelmidine, and B.K. Damkroger: U.S. Patent 6,496,530 B2, 2002.

  11. D.K. Melgaard, R.L. Williamson, and J.J. Beaman: JOM, 1998, vol. 50 pp. 13–17.

    Article  Google Scholar 

  12. A. Kharicha, M. Wu, and A. Ludwig: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 145–50.

  13. M. A. Maulvault: Ph.D. Thesis, MIT, 1967, pp. 80–85.

  14. A. Mitchell, S. Joshi and J. Cameron: Metall. Trans., 1971, vol. 2, pp. 561–67.

    Article  Google Scholar 

  15. J. Mendrykowski, J.J. Poveromo, J. Szekely and A. Mitchell: Metall. Trans., 1972, vol. 4, pp. 1761–68.

    Article  Google Scholar 

  16. T. Kishida, K. Yamaguchi, T. Tomioka, and T. Ichihara: Electr. Steel, 1974, vol. 45, pp. 219–27.

    Google Scholar 

  17. K. H. Tacke and K. Schwerdtfeger: Arch. Eisenhüttenwesen, 1981, vol. 52, pp. 137–42.

    Google Scholar 

  18. A. Jardy, D. Ablitzer and J.F. Wadier: Metall. Trans. B, 1991, vol. 22, pp. 111–20.

    Article  Google Scholar 

  19. J. Yanke, K. Fezi, M. Fahrmann, and M.J.M. Krane: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 47–55.

  20. A. Kharicha, M. Wu and A. Ludwig: ISIJ, 2014, vol. 54, pp. 1621–28.

    Article  Google Scholar 

  21. A. Mitchell, G. Beynon: Metall. Trans., 1971, vol. 2, pp. 3333–45.

    Article  Google Scholar 

  22. M. Kawakami, K. Nagata, M. Yamamura, N. Sakata, Y. Miyashita and K.S. Goto, Testsu- to-Hagane,1977, vol. 63, p. 220.

    Google Scholar 

  23. A. Kharicha, A. Ludwig, and M. Wu: EPD Congress, San Diego, 2011, pp. 771–78.

    Google Scholar 

  24. A. Kharicha, M. Wu, A. Ludwig, M. Ramprecht, H. Holzgruber: CFD modeling and simulation in materials, Wiley Florida, 2012, pp.139–46.

    Book  Google Scholar 

  25. V. Weber, A. Jardy, B. Dussoubs, D. Ablitzer, S. Ryberon, V. Schmitt, S. Hans and H. Poisson: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 271–80.

    Article  Google Scholar 

  26. H. Song and N. Ida: IEEE Trans. Magn., 1991, vol. 27, pp. 4012–15.

    Article  Google Scholar 

  27. T. Esch and F. R. Menter: Turbulence Heat and Mass Transfer Conference, Antalya, Turkey, 2003.

  28. F.R. Menter: AIAA J., 1994, vol. 32, pp. 1598–605.

    Article  Google Scholar 

  29. F. R. Menter, M. Kuntz and R. Langtry: Turbul. Heat Mass Transf., 2003, vol. 4, pp. 625–32.

    Google Scholar 

  30. Fluent 14.5 User’s Guide, Fluent Inc., 2012.

  31. A. Menendez Blanco and J. M. Fernandez Oro: Comput. Fluids, 2012, vol. 57, pp.138–50.

    Article  Google Scholar 

  32. G. Lame and B.P. Clapeyron: Ann. Chem. Phys., 1831, vol. 47, pp. 250–56.

    Google Scholar 

  33. L.I. Rubinstein: The Stefan Problem, American Mathematical Society, Providence USA, 1971.

    Google Scholar 

  34. K.C. Mills and B.J. Keene: Int. Met. Rev., 1981, vol. 1, pp. 21–69.

    Google Scholar 

  35. M. Hajduk and T.E. Gammal: Stahl Eisen, 1979, vol. 99, p. 113.

    Google Scholar 

  36. K.M. Kelkar, S.V. Patankar, S.K. Srivatsa, R.S. Minisandram, D.G. Evans, J.J. deBarbadillo, R.H. Smith, R.C. Helmink, A. Mitchell, and H.A. Sizek: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 3–12.

  37. A.D. Patel: International Symposium on Liquid Metal Processing and Casting, Nancy, France, 2011, pp. 49–56.

  38. S.F. Medina and M.P. de Andres: Ironmak. Steelmak., 1987, vol. 14, pp.110–21.

    Google Scholar 

  39. E. Karimi-Sibaki, A. Kharicha, M. Wu, and A. Ludwig: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 13–19.

  40. E. Karimi-Sibaki, A. Kharicha, M. Wu, and A. Ludwig: Ingot Casting Rolling Forging Conference, Milan, Italy, 2014.

  41. H. Holzgruber, W. Holzgruber, A. Scheriau, M. Knabl, M. Kubin, J. Korp, and R Pierer: International Symposium on Liquid Metal Processing and Casting, Nancy, France, 2011, pp. 57–64.

  42. M. Hugo, B. Dussoubs, A. Jardy, J. Escaffre, and H. Poisson: International Symposium on Liquid Metal Processing and Casting, Austin, 2013, pp. 79–85.

  43. A. Kharicha, A. Ludwig and M. Wu: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 129–34.

    Article  Google Scholar 

  44. E. Karimi-Sibaki, A. Kharicha, J. Korp, M. Wu, and A. Ludwig: Met. Trans. Forum, vol. 790, p. 396, 2014.

    Google Scholar 

  45. A. Kharicha, W. Schützenhöfer, A. Ludwig, R. Tanzer and M. Wu: Steel Res. Int., 2008, vol. 79, pp. 632–36.

    Google Scholar 

  46. R. Taylor and K.C. Mills: Arch. Eisenhüttenwesen, 1982, vol. 53, pp. 55–63.

    Google Scholar 

  47. M. Choudhary and J. Szekely: Ironmak. Steelmak., 1981, vol. 5, pp. 225-32.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development within the framework of the Christian Doppler Laboratory for Advanced Process Simulation of Solidification and Melting.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kharicha.

Additional information

Manuscript submitted December 3, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi-Sibaki, E., Kharicha, A., Bohacek, J. et al. A Dynamic Mesh-Based Approach to Model Melting and Shape of an ESR Electrode. Metall Mater Trans B 46, 2049–2061 (2015). https://doi.org/10.1007/s11663-015-0384-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-015-0384-0

Keywords

Navigation