Skip to main content
Log in

Numerical Investigation of Shell Formation in Thin Slab Casting of Funnel-Type Mold

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The key issue for modeling thin slab casting (TSC) process is to consider the evolution of the solid shell including fully solidified strand and partially solidified dendritic mushy zone, which strongly interacts with the turbulent flow and in the meantime is subject to continuous deformation due to the funnel-type mold. Here an enthalpy-based mixture solidification model that considers turbulent flow [Prescott and Incropera, ASME HTD, 1994, vol. 280, pp. 59–69] is employed and further enhanced by including the motion of the solidifying and deforming solid shell. The motion of the solid phase is calculated with an incompressible rigid viscoplastic model on the basis of an assumed moving boundary velocity condition. In the first part, a 2D benchmark is simulated to mimic the solidification and motion of the solid shell. The importance of numerical treatment of the advection of latent heat in the deforming solid shell (mushy zone) is specially addressed, and some interesting phenomena of interaction between the turbulent flow and the growing mushy zone are presented. In the second part, an example of 3D TSC is presented to demonstrate the model suitability. Finally, techniques for the improvement of calculation accuracy and computation efficiency as well as experimental evaluations are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

c p :

Specific heat of liquid–solid mixture (J kg−1 K−1)

C 1ɛ ,C 2ɛ ,C μ :

Constants of the standard kɛ model (1)

E :

Young’s modulus (N m−2)

f ,f s :

Volume fraction of liquid and solid phases (1)

\( f_{\text{s}}^{\text{integral}} \) :

Total solid phase in the calculation domain (1)

G :

Shear production of turbulence kinetic energy (kg m−1 s−3)

h :

Sensible enthalpy of liquid–solid mixture (J kg−1)

h ref :

Reference enthalpy at temperature T ref (J kg−1)

\( h_{\ell }^{\text{sensible}} \) :

Sensible enthalpy of liquid phase (J kg−1)

\( h_{\text{s}}^{\text{sensible}} \) :

Sensible enthalpy of solid phase (J kg−1)

\( h_{\ell }^{\text{total}} \) :

Total enthalpy of liquid phase (J kg−1)

\( h_{\text{s}}^{\text{total}} \) :

Total enthalpy of liquid phase (J kg−1)

H :

Total enthalpy of liquid–solid mixture (J kg−1)

H ,H s :

Total enthalpy of liquid or solid phase (J kg−1)

HTC:

Heat transfer coefficient between mold and casting (W m−2 K−1)

k :

Turbulence kinetic energy per unit of mass (m2 s−2)

k p :

Partition coefficient of binary alloy (1)

K :

Permeability (m2)

L :

Latent heat (J kg−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {n}_{\text{f}} \) :

Unit vector normal to the curved mold surface (1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {n}_{\text{z}} \) :

Unit vector normal in casting direction (1)

p :

Pressure (N m−2)

PDAS:

Primary dendrite arm space (m)

Prt,h :

Prandtl no. for energy equation (1)

Prt,k :

Prandtl no. for turbulence kinetic energy k (1)

Prt,ɛ :

Prandtl no. for turbulence dissipation rate ɛ (1)

S e :

Source term for energy equation (J m−3 s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {S}_{\text{mom}} \) :

Source term for momentum equation (kg m−2 s−2)

t :

Time (s)

T :

Temperature (K)

T ext :

External mold surface temperature

T f :

Melt point of pure solvent (K)

T inlet :

Inlet temperature (K)

T liquidus :

Liquidus temperature of alloy (K)

T ref :

Reference temperature for h ref (K)

T solidus :

Solidus temperature of alloy (K)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u} \)(u x,u y,u z):

Velocity of the liquid–solid mixture (m s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u}_{\text{inlet}} \) :

Inlet velocity (m s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u}_{\text{pull}} \) :

Casting velocity (m s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u}_{\ell } \)(u x ,u y ,u z ):

Liquid velocity (m s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u}_{\text{s}} \)(u xs ,u ys ,u zs ):

Solid velocity (m s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {u}_{\text{s}}^{\text{surface}} \) :

Moving surface velocity (m s−1)

\( \overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\rightharpoonup}$}} {\delta } \) :

Displacement vector (m)

Δx :

Mesh size (m)

ɛ :

Turbulence dissipation rate per unit of mass (m2 s−3)

λ :

1st Lamé parameter (N m−2)

λ mix :

Thermal conductivity of liquid–solid mixture (W m−1 K−1)

λ eff :

Effective thermal conductivity due to turbulence (W m−1 K−1)

λ t :

Turbulence thermal conductivity (W m−1 K−1)

ρ(=ρ  = ρ s):

Density (kg m−3)

μ :

2nd Lamé parameter (N m−2)

μ eff :

Dynamic effective viscosity due to turbulence (kg m−1 s−1)

μ :

Dynamic liquid viscosity (kg m−1 s−1)

μ t :

Dynamic turbulence viscosity (kg m−1 s−1)

ν :

Poisson’s ratio (1)

References

  1. R. Bruckhaus, R. Fandrich: Trans. Ind. Inst. Met., 2013, vol. 66, pp. 561–66.

    Article  Google Scholar 

  2. R.Y. Yin, H. Zhang: Iron Steel (Peking), 2011, vol. 46, pp. 1–9.

    Google Scholar 

  3. J.E. Camporredondo-S, A.H. Castillejos-E, F.A. Acosta-G, E.P. Gutierrez-M, M.A. Herrera-G: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 541–60.

    Article  Google Scholar 

  4. J.E. Camporredondo-S, F.A. Acosta-G, A.H. Castillejos-E, E.P. Gutierrez-M, R. Gonzalez: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 561–73.

    Article  Google Scholar 

  5. T.G. O’Connor and J.A. Dantzig: Metall. Mater. Trans. B, 1994, vol. 25B, pp. 443–57.

    Article  Google Scholar 

  6. R.D. Morales, Y. Tang, G. Nitzl, C. Eglsäeer, G. Hackl: ISIJ Int., 2012, vol. 52, pp. 1607–15.

    Article  Google Scholar 

  7. S. Garcia-Hernandes, R.D. Morales, E. Torres-Alonso: Ironmak. Steelmak., 2010, vol. 37, pp. 360–68.

    Article  Google Scholar 

  8. M.M. Yavuz: Steel Res. Int., 2011, vol. 82, pp. 809–18.

    Article  Google Scholar 

  9. J.A. Kromhout, E.R. Dekker, M. Kawamoto, and R. Boom: 7 th European Continuous Casting Conference, Session 8: Mould Performance and Initial Solidification, Düsseldorf, 2011, p. S8.1.

  10. X. Tian, B. Li and J. He: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 596–604.

    Article  Google Scholar 

  11. J. Park, B.G. Thomas, I. Samaraseka, and U. Yoon: Metall. Mater. Trans. B, 2002, vol. 33B, pp. 425–36.

    Article  Google Scholar 

  12. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94–107.

    Article  Google Scholar 

  13. H. Nam, H. Park, and J. Yoon: ISIJ Int., 2000, vol. 40, pp. 886–92.

    Article  Google Scholar 

  14. E. Torres-Alonso, R.D. Morales, and S. Garcia-Hernandez: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 675–90.

    Article  Google Scholar 

  15. H. Park, H. Nam, and J. Yoon: ISIJ Int., 2001, vol. 41, pp. 974–80.

    Article  Google Scholar 

  16. S.L. Choi, K.J. Ryu and H.S. Park: Met. Mater. Int., 2002, vol. 8, pp. 527–33.

    Article  Google Scholar 

  17. X. Tian, F. Zou, B. Li and J. He: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 112–20.

    Article  Google Scholar 

  18. H. Liu, C. Yang, H. Zhang, Q. Zhai, and Y. Gan: ISIJ Int., 2011, vol. 51, pp. 392–401.

    Article  Google Scholar 

  19. C. Pfeiler, B.G. Thomas, M. Wu, A. Ludwig and A. Kharicha: Steel Res. Int., 2008, vol. 79, pp. 599–607.

    Google Scholar 

  20. B.G. Thomas, R.O. O’Malley, and D. Stone: Proc. MCWASP VIII, B.G. Thomas and C. Beckermann, eds., TMS Publications, Warrendale, PA, 1998, pp. 1185–92.

    Google Scholar 

  21. J.S. Hsiao: Numer. Heat Transf., 1985, vol. 8, pp. 653–66.

    Article  Google Scholar 

  22. P.R. Chakraborty and P. Dutta: Metall. Mater. Trans. B, 2011, vol. 42B, pp. 1075–79.

    Article  Google Scholar 

  23. B. Sarler, R. Vertnik, and K. Mramor: Proc. MCWASP XIII: IOP Conf. Series: Materials Sci. Eng, A. Ludwig, M. Wu, and A. Kharicha, eds., Schladming, 2012. doi:10.1088/1757-899X/33/1/012012.

  24. V.R. Voller and C. Prakash: Int. J. Heat Mass Transf., 1987, vol. 30, pp. 1709–19.

    Article  Google Scholar 

  25. V.R. Voller, A.D. Brent and C. Prakash: Int. J. Heat Mass Transf., 1989, vol. 32, pp. 1719–37.

    Article  Google Scholar 

  26. V.R. Voller, A.D. Brent and C. Prakash: Appl. Math. Model., 1990, vol. 14, pp. 320–26.

    Article  Google Scholar 

  27. P.J. Prescott and F.P. Incropera: Transp. Phenom. Mater. Proc. Manuf. ASME HTD, 1994, vol. 280, pp. 59–69.

    Google Scholar 

  28. P.J. Prescott and F.P. Incropera: J. Heat Transf., 1994, vol. 116, pp. 735–41.

    Article  Google Scholar 

  29. P.J. Prescott, F.P. Incropera and D.R. Gaskell: Trans. ASME, 1994, vol. 116, pp. 742–49.

    Article  Google Scholar 

  30. P.J. Prescott and F.P. Incropera: Trans. ASME, 1995, vol. 117, pp. 716–24.

    Article  Google Scholar 

  31. W.Kurz, D.J. Fisher: Fundamentals of Solidification, 4th Edition, Trans Tech Publications LTD, Switzerland, 1998, pp. 280-288.

    Google Scholar 

  32. J. Miettinen, S. Louhenkilpi, H. Kytönen and J. Laine: Math. Comput. Simul., 2010, vol. 80, pp. 1536–50.

    Article  Google Scholar 

  33. J. P. Gu and C. Beckermann: Metall. Mater. Trans., 1999, vol. 33A, pp. 1357–66.

    Article  Google Scholar 

  34. OpenFOAM® V2.2.0 Documentation. http://www.openfoam.org/archive/2.2.0/docs/.

  35. W.S. Slaughter: The Linearized Theory of Elasticity, Birkhäuser, Boston, 2002, pp. 1–514.

    Book  Google Scholar 

  36. P.J. Roache: Fundamentals of Computational Fluid Dynamics, Hermosa Publishers, New Mexico, 1998, pp. 1–135.

    Google Scholar 

  37. A. Vakhrushev, M. Wu, A. Ludwig, Y. Tang, G. Hackl, and G. Nitzl: Proc. MCWASP XIII: IOP Conf. Series: Materials Sci. Eng, A. Ludwig, M. Wu, A. Kharicha, eds., Schladming, 2012. doi:10.1088/1757-899X/33/1/012014.

  38. S. Koric, B.G. Thomas, V.R. Voller: Numer. Heat Transf. B Fundam., 2010, vol. 57, pp. 396–413.

    Article  Google Scholar 

  39. A. Vakhrushev, A. Ludwig, M. Wu, Y. Tang, G. Nitzl, and G. Hackl: Proc. OSCIC’12, London, 2012, pp. 1–18.

  40. J. Iwasaki and B.G. Thomas: Proc. Materials Properties, Characterization, and Modeling, TMS Annual Meeting, 2012, pp. 355–362.

  41. C. Li and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1151–1172.

    Article  Google Scholar 

  42. A. Koric, L.C. Hibbeler, and B.G. Thomas: Int. J. Numer. Methods Eng., 2009, vol. 78, pp. 1–31.

    Article  Google Scholar 

  43. M. Wu, J. Domitner and A. Ludwig: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 945–63.

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by RHI AG, the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged. The authors acknowledge the fruitful discussions with Professor Brian G. Thomas, University of Illinois at Urbana-Champaign, USA, and Dr. Christian Chimani, Austrian Institute of Technology, Austria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Wu.

Additional information

Manuscript submitted July 3, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vakhrushev, A., Wu, M., Ludwig, A. et al. Numerical Investigation of Shell Formation in Thin Slab Casting of Funnel-Type Mold. Metall Mater Trans B 45, 1024–1037 (2014). https://doi.org/10.1007/s11663-014-0030-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-014-0030-2

Keywords