Skip to main content
Log in

The Use of Positron Emission Particle Tracking (PEPT) to Study the Movement of Inclusions in Low-Melting-Point Alloy Castings

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Positron emission particle tracking (PEPT) employs a radioactive particle that decays by emission of positrons. These positrons collide with local electrons to produce γ-rays emitted at 180 deg to each other; detection of these γ-ray pairs allows the location of the radioactive particle to be identified within a few millimeters. This technique has been tested to determine its applicability to the study of inclusions in cast metals. To use particles representative of inclusion sizes in castings, both alumina particles and particles of an ion exchange resin were employed. These were within a size range of approximately 60 to 100 μm, made radioactive by adsorption and ion exchange techniques, respectively. The radioactive particles, of activity 100 to 1000 μCi, were introduced into tube-shaped castings made from the low-melting-point alloys Field’s metal and Lensalloy-136, cast into an acrylic mold. The technique allowed the particle track to be determined from the point of initial introduction to the final resting place of the particle, with increasing reproducibility being obtained as the reproducibility as the casting technique was improved. Experiments in which filters were placed in to the running system showed that the removal of the particles by the filters varied according to the filter pore size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Trokar, B. Breskvar, M. Tandler, D. Mandrino, and M. Dobersek: Vacuum, 2001, vol. 62, pp. 379–85.

    Article  Google Scholar 

  2. R. Kiessling: Non-Metallic Inclusions in Steel, Parts I-IV, The Institute of Materials, London, UK, 1976.

    Google Scholar 

  3. P.K. Trojan: Metals Handbook, vol. 9, ASM International, Materials Park, OH, 1999.

  4. Z.B. Wen, R.Z. Ming, and W.J. Wiong: Trans. Nonferrous Metals Soc. China, 2006, vol. 16, pp. 33–38.

    Article  CAS  Google Scholar 

  5. V.P. Sylovanyuk, O.A. Mityaev, A.E. Ostrovs’ka, N.A. Ivantyshyn, and I.P. Volchok: Mater. Sci., 2009, vol. 45, pp. 299–308.

    Article  CAS  Google Scholar 

  6. R.V. Vainola, L.E.K. Holappa, and P.H.J. Karvonen: J. Mater. Process. Tech. A, 2008, vol. 495A, pp. 316–19.

    Google Scholar 

  7. D.T. Llewellyn and R.C. Hudd: Steels: Metallurgy and Applications, Butterworth-Heinemann, Burlington, MA, 2000.

    Google Scholar 

  8. Y.B. Kang, H.S. Kim, J. Zhang, and H.G. Lee: J. Phys. Chem. Solids, 2005, vol. 66, pp. 219–25.

    Article  CAS  Google Scholar 

  9. M. Zhou, D. Shu, K. Li, W.Y. Zhang, H.J. Ni, B.D. Sun, and J. Wang: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1183–91.

    Article  CAS  Google Scholar 

  10. K.C. Mills: A Literature Review of Inclusion Removal by Filtration and Floatation, National Physical Laboratory, Teddington, UK, 1991.

    Google Scholar 

  11. Z.L. Feng: J. Iron Steel Res. Int., 2006, vol. 13, pp. 1–8.

    Google Scholar 

  12. Y. Qiang, Z.Z. Shu, and H.Q. Fu: J. Iron Steel Res. Int., 2010, vol. 17, pp. 6–10.

    Google Scholar 

  13. MagmaSoft. www.magmasoft.de.

  14. Flow-3D. www.flow3d.com.

  15. L. Zhang and B.G. Thomas: J. Univ. Sci. Technol. Beijing, 2006, vol. 13, pp. 293–300.

    Article  Google Scholar 

  16. T.F. Budinger and H.F. VanBrocklin: The Biomedical Engineering Handbook, CRC Press LLC, Boca Raton, FL, 2000.

    Google Scholar 

  17. D.J. Parker, C.J. Broadbent, P. Fowles, M.R. Hakesworth, and P. McNeil: Nucl. Instr. Methods Phy. Res., 1993, vol. A326, pp. 592–607.

    Article  CAS  Google Scholar 

  18. D.J. Parker, T.W. Leadbeater, X. Fan, M.N. Hausard, A. Ingram, and Z. Wang: Meas. Sci. Tech., 2008, vol. 19, p. 094004.

    Article  Google Scholar 

  19. J.R. Jones and J. Bridgwater: Int. J. Min. Proc., 1998, vol. 53, pp. 29–38.

    Article  CAS  Google Scholar 

  20. B.P.B. Hoomans, J.A.M. Kuipers, M.A. Salleh, M. Stien, and J.P.K. Seville: Powder Tech., 2001, vol. 116, pp. 166–77.

    Article  CAS  Google Scholar 

  21. P.G. Fairhurst, M. Barigou, P.J. Fryer, J.P. Pain, and D.J. Parker: Int. J. Multiphase Flow, 2001, vol. 27, pp. 1881–1901.

    Article  CAS  Google Scholar 

  22. S. Bakalis, P.W. Cox, A.B. Russel, D.J. Parker, and P.J. Fryer: Chem. Eng. Sci., 2006, vol. 61, pp. 1864–77.

    Article  CAS  Google Scholar 

  23. S. Bakalis, P.W. Cox, W.W. Nolan, D.J. Parker, and P.J. Fryer: J. Food Science, 2003, vol. 68, pp. 2684–92.

    Article  CAS  Google Scholar 

  24. K. Mehauden, P.W. Cox, S. Bakalis, P.J. Fryer, X. Fan, D.J. Parker, and M.J.H. Simmons: Innovat. Food Sci. Emerg. Tech., 2009, vol. 10, pp. 643–54.

    Article  Google Scholar 

  25. A. Guida, A.W. Nienow, and M. Barigou: Chem. Eng. Sci., 2010, vol. 65, pp. 1905–14.

    Article  CAS  Google Scholar 

  26. A. Guida, X. Fan, D.J. Parker, A.W. Nienow, and M. Barigou: Chem. Eng. Res. Des., 2009, vol. 87, pp. 421–29.

    Article  CAS  Google Scholar 

  27. K.E. Cole, K.E. Waters, D.J. Parker, S.J. Neethling, and J.J. Cilliers: Chem. Eng. Sci., 2010, vol. 65, pp. 1887–90.

    Article  CAS  Google Scholar 

  28. R.D. Wilman, S. Blackburn, D.M. Benton, P.A. McNeill, and D.J. Parker: Powder Tech., 1999, vol. 103, pp. 220–29.

    Article  Google Scholar 

  29. K.E. Waters, N.A. Rowson, X. Fan, D.J. Parker, and J.J. Cilliers: Min. Eng., 2008, vol. 21, pp. 877–82.

    Article  CAS  Google Scholar 

  30. W.D. Griffiths, Y. Beshay, D.J. Parker, and X. Fan: J. Mater. Sci., 2008, vol. 43, pp. 6853–56.

    Article  CAS  Google Scholar 

  31. W.D. Griffiths, D.J. Parker, X. Fan, andM. Hausard: Mater. Sci. Technol., 2010, vol. 26, pp. 528–33.

    Article  CAS  Google Scholar 

  32. X. Fan, D.J. Parker, and M.D. Smith: Nucl. Instr. Meth., Phys. Res. A, 2006, vol. 558, pp. 542–46.

    Article  CAS  Google Scholar 

  33. X. Fan, D.J. Parker, and M.D. Smith: Nucl. Instr. Meth., Phys. Res. A, 2006, vol. 562, pp. 345–50.

    Article  CAS  Google Scholar 

  34. D. Parker, R. Forster, P. Fowles, and P. Takhar: Nucl. Instr. Meth. Phys. Res. A, 2002, vol. 477, pp. 540–45.

    Article  CAS  Google Scholar 

  35. S. Brown, D.L. Bailey, K. Willowson, and C. Baldock: Appl. Radiat. Isot., 2008, vol. 66, pp. 1206–12.

    Article  CAS  Google Scholar 

  36. Z. Yang, P.J. Fryer, S. Bakalis, X. Fan, D.J. Parker, and J.P.K. Seville: Nucl. Instr. Meth. Phys. A, 2007, vol. 577, pp. 585–94.

    Article  CAS  Google Scholar 

  37. Z. Yang, D.J. Parker, P.J. Fryer, S. Bakalis, and X. Fan: Nucl. Instr. Meth. Phys., A, 2006, vol. 564, pp. 332–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Beshay Steel of Egypt for the provision of funds to enable the work to be carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. D. Griffiths.

Additional information

Manuscript submitted September 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffiths, W.D., Beshay, Y., Caden, A.J. et al. The Use of Positron Emission Particle Tracking (PEPT) to Study the Movement of Inclusions in Low-Melting-Point Alloy Castings. Metall Mater Trans B 43, 370–378 (2012). https://doi.org/10.1007/s11663-011-9596-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9596-0

Keywords

Navigation