Skip to main content
Log in

Fluid Flow-Related Transport Phenomena in Steel Slab Continuous Casting Strands under Electromagnetic Brake

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In the current study, a three-dimensinal (3D) numerical model is built to investigate the effect of a local-type electromagnetic brake (EMBr) on the fluid flow, heat transfer, and inclusion motion in slab continuous casting strands. The results indicate that the magnetic force affects the jet characteristics, including jet angle, turbulent kinetic energy, and its dissipation rate. To reduce the top surface velocity and stabilize the top surface, the magnetic flux intensity should be larger than a critical value. With a 0.39 T magnetic flux intensity, the top surface velocity and its fluctuation can be well controlled, and less slag is entrained. The motion of argon bubbles is also studied. More bubbles, especially >2.0-mm bubbles, escape from the top surface between the mold submerged entry nozzle (SEN) and \( \frac{1}{4} \) width for the case with a 0.39 T EMBr. This may push the top slag away and create an open “eye” on the top slag. Small bubbles (≤1 mm) tend to escape from one side of wide face no matter with or without EMBr, which is induced by the swirl flow from the SEN outport. EMBr has a little effect on the overall removal fraction of inclusions; however, it affects the local distribution of inclusion in the slab. With EMBr, more inclusions accumulate the region just below the surface, thus a worse subsurface quality, whereas the inner quality of the slab is better than that without EMBr. For heat transfer in the mold, the heat flux on the narrow face and the area of possible break-out zones can be reduced by using EMBr. Prevention of bias flow and/or asymmetrical flow in mold by EMBr is also concluded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39

Similar content being viewed by others

References

  1. J. Nagai, K. Suzuki, S. Kojima, and S. Kollberg: Iron Steel Eng., 1984, vol. 41, no. 5, pp. 41-47.

    Google Scholar 

  2. E. Takeuchi, Z. Masafumi, T. Takehiko, and S. Mizoguchi: Magnetohydrodynamics in Process Metallurgy, J. Szekely, J.W. Evans, K. Blazek, and N. El-Kaddah, eds., TMS, Warrendale, PA, 1992, p. 261.

  3. M. Zeze, H. Harada, and E. Takeuchi: Steelmaking Conf. Proc., Dallas, TX, 1993, pp. 267-72.

    Google Scholar 

  4. K. Kariya, Y. Kitano, M. Kuga, A. Idogawa, and K. Sorimachi: Steelmaking Conf. Proc., Dallas, TX, 1994, pp. 53-58.

    Google Scholar 

  5. S.G. Kollberg and H.R. Hackl: Iron Steel Eng., 1996, vol. 6, pp. 24-28.

    Google Scholar 

  6. K. Okuyama: CAMP-ISIJ, 1999, vol. 12, p. 8321.

  7. H. Harada, T. Toh, T. Ishii, K. Kaneko, and E. Takeuchi: ISIJ Int., 2001, vol. 41, no. 10, pp. 1236-44.

    Article  CAS  Google Scholar 

  8. B. Li and F. Tsukihashi: ISIJ Int., 2006, vol. 46, no. 12, pp. 1833-38.

    Article  CAS  Google Scholar 

  9. M. Cornelissen and R. Boom: Steel Res., 2003, vol. 74, no. 11, pp. 716-23.

    CAS  Google Scholar 

  10. K. Sorimachi and J. Hasunuma: Kawasaki Steel Technical Report, 1996, vol. 35, pp. 52-59.

    Google Scholar 

  11. A. Lehman, G. Tallback, and A. Rullgard: ABB Review, 1996, (1), pp. 4–10.

  12. S. Kenichiro: Tetsu-to-Hagane, 1982, vol. 68, no. 11, p. S920.

    Google Scholar 

  13. S. Kollberg and P. Löfgren: Cahiers d’Infomations Techniques, 1980, vol. 102, no. 6, pp. S31-S40.

    Google Scholar 

  14. E. Takeuchi, T. Toh, H. Harada, M. Zeze, H. Tanaka, M. Hojo, T. Ishii, and K. Shigematsu: Nippon Steel Tech. Report, 1994, vol. 61, pp. 29-37.

    Google Scholar 

  15. A. Idogawa, Y. Kitano, and H. Tozawa: Kawasaki Steel Technical Report, 1996, vol. 35, pp. 74-81.

    Google Scholar 

  16. B. Li and F. Tsukihashi: ISIJ Int., 2001, vol. 41, no. 8, pp. 844-50.

    Article  CAS  Google Scholar 

  17. H. Harada, E. Takeuchi, M. Zeze, and T. Ishii: Tetsu-to-Hagane, 2000, vol. 86, no. 4, pp. 278-84.

    CAS  Google Scholar 

  18. W. Cui: “EMBR, ElectroMagnetic Brake for Thin Slab Casters,” ABB Report, 2005, pp. 1–4.

  19. E. Takeuchi and H. Harada: Int. Conf. on CFD in Mineral & Metal Processing and Power Generation, 1997, pp. 71–78.

  20. H. Zhen, B. Li, and Z. Chang: Acta Metall. Sin., 2001, vol. 37, no. 8, pp. 877-81.

    Google Scholar 

  21. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94-107.

    Article  CAS  Google Scholar 

  22. A. Lehman, G. Tallback, S. Kollberg, and H. Hackl: Int. Symp. on Electromagnetic Proc. of Materials, Tokyo, Japan, 1994, p. 372.

  23. K.H. Moon, H.K. Shin, B.J. Kim, J.Y. Chung, Y.S. Hwang and J.K. Yoon: ISIJ Int., 1996, vol. 36, pp. S201-S203.

    Article  Google Scholar 

  24. Y. Haiqi, W. Baofeng, L. Huiqin, and L. Jianchao: J. Mater. Process. Tech., 2008, vol. 202, nos. 1-3, pp. 179-87.

    Article  Google Scholar 

  25. K. Ezaki, M. Kaneda, T. Tagawa, and H. Ozoe: ISIJ Int., 2003, vol. 43, no. 6, pp. 907-14.

    Article  CAS  Google Scholar 

  26. K. Okazawa, I. Sawada, H. Harada, T. Toh, and E. Takeuchi: Tetsu-to- Hagane, 1998, vol. 84, no. 7, pp. 490-95.

    CAS  Google Scholar 

  27. Y. Delannoy, O. Widlund, and J. Etay: Int. Scientific Colloquium—Modelling for Electromagnetic Processing, Hannover, Germany, 2003, pp. 183-88.

    Google Scholar 

  28. T. Toh, H. Hasegawa and H. Harada: ISIJ Int., 2001, vol. 41, no. 10, pp. 1245-51.

    Article  CAS  Google Scholar 

  29. B. Li, T. Okane, and T. Umeda: Metall. Mater. Trans. B, 2000, vol. 31B, pp. 1491-1503.

    Article  CAS  Google Scholar 

  30. M. Morishita, M. Kogita, T. Nakaoka, and T. Miyake: Tetsu-to-Hagane, 2001, vol. 87, no. 4, pp. 167-74.

    CAS  Google Scholar 

  31. G. Xu and J. He: J. Northeastern Univ. (Natural Science), 2001, vol. 22, no. 1, pp. 83-86.

    CAS  Google Scholar 

  32. Y. Hwang, P. Cha, H. Nam, K. Moon, and J. Yoon: ISIJ Int., 1997, vol. 37, no. 7, p. 659-67.

    Article  CAS  Google Scholar 

  33. K. Deok-Soo, K. Woo-Seung, and C. Kee-Hyeon: ISIJ Int., 2000, vol. 40, no, 7, pp. 670-76.

    Article  Google Scholar 

  34. M.Y. Ha, H.G. Lee, and S.H. Seong: J. Mater. Process. Tech., 2003, vol. 133, no. 3, pp. 322-39.

    Article  CAS  Google Scholar 

  35. K.-G. Kang, H.-S. Ryou, and N.-K. Hur: Numer. Heat Tran. Part A, 2005, vol. 48, pp. 461-81.

    Article  CAS  Google Scholar 

  36. K. Takatani: Magnetohydrodynamics, 1996, vol. 32, no. 2, pp. 128-33.

    Google Scholar 

  37. Y.-S. Hwang, P.-R. Cha, H.-S. Nam, K.-H. Moon, and J.-K. Yoon: ISIJ Int., 1997, vol. 37, no. 7, pp. 659-67.

    Article  CAS  Google Scholar 

  38. H. Cerber and J. Rachford: IEEE, 1996, vol. 33, no. 3, pp. 2541-46.

    Google Scholar 

  39. H. Trippelsdorf, R. Marraccini, and S. Kollberg: Int. Sci. Colloquium, Hannover, Germany, 2003, pp. 189-96.

    Google Scholar 

  40. Y. Wang and L. Zhang: AISTech 2009, St. Louis, MO, 2009.

  41. H. Yu, B. Wang, H. Li, and J. Li: J. Mater. Process. Tech., 2008, vol. 202, pp. 179-87.

    Article  CAS  Google Scholar 

  42. P. Gardin, J.Galpin, M. Regnier, and J. Radot: IEEE Trans. Magnetics, 1995, vol. 31, no. 3, pp. 2088-91.

    Article  Google Scholar 

  43. P. Gardin, J.-M. Galpin, M.-C. Regnier, and J.-P. Radot: Magnetohydrodynamics, 1996, vol. 32, no. 2, pp. 189-95.

    Google Scholar 

  44. K. Takatani: ISIJ Int., 2003, vol. 43, no. 6, pp. 915-22.

    Article  CAS  Google Scholar 

  45. FLUENT6.1-Mannual: Fluent. Inc., Lebanon, NH, Report, 2003.

  46. N. Bessho, R. Yoda, H. Yamasaki, T. Fujii, T. Nozaki, and S. Takatori: Iron Steelmaker, 1991, vol. 18, no. 4, pp. 39-44.

    CAS  Google Scholar 

  47. I. Sawada, H. Tanaka, and I. Takigawa: The Sixth International Iron and Steel Congress, Nagoya, Japan, 1990, vol. 3, pp. 334–47.

  48. B.G. Thomas and L. Zhang: ISIJ Int., 2001, vol. 41, no. 10, pp. 1181-93.

    Article  CAS  Google Scholar 

  49. L. Zhang, J. Aoki, and B.G. Thomas: Metall. Mater. Trans. B., 2006, vol. 37B, pp. 361-79.

    Article  CAS  Google Scholar 

  50. L. Zhang and S. Taniguchi: Int. Mater. Rev., 2000, vol. 45, no. 2, pp. 59-82.

    Article  CAS  Google Scholar 

  51. R.H.M.G. Nabben, R.P.J. Duursma, A.A. Kamperman, and J.L. Lagerberg: Ironmaking Steelmaking, 1998, vol. 25, no. 5, pp. 403-06.

    CAS  Google Scholar 

  52. H.B.M. Schulte, R.H.M.G. Nabben, D.W. Van der Plas, and D. Trizenberg: Rev. Metall.-Paris, 1997, vol. 1997, no. 6, pp. 751-60.

    Google Scholar 

  53. Q. Yuan, S. Sivaramakrishnan, S.P. Vanka, and B.G. Thomas: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 967-82.

    Article  CAS  Google Scholar 

  54. K. Cukierski and B.G. Thomas: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 94-106.

    Article  CAS  Google Scholar 

  55. L. Zhang, S. Yang, X. Wang, K. Cai, J. Li, X. Wan, and B.G. Thomas: Metall. Mater. Trans. B, 2007, vol. 38B, pp. 63-83.

    Article  CAS  Google Scholar 

  56. L. Zhang, Y. Wang, and X. Zuo: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 534-50.

    Article  CAS  Google Scholar 

  57. L.J. Mika and B.G. Thomas: Modeling and Control of Casting and Welding Processes—IV, A.F. Giamei and G.J. Abbaschian, eds., TMS, Warrendale, PA, 1988, pp. 459-69.

  58. T. Kouji, T. Yoshinori, M. Hideo, and N. Kenzi: ISIJ Int., 2001, vol. 41, no. 10, pp. 1252-61.

    Article  Google Scholar 

  59. B.G. Thomas, Q. Yuan, S. Sivaramakrishnan, and S.P. Vanka: J. Metals: JOM-e, 2002. http://www.tms.org/pubs/journals/JOM/0201/Thomas/Thomas-0201.html.

  60. B.G. Thomas: 3rd Int. Cong. on the Sc. and Tech. of Steelmaking, AIST, Warrandale, PA, 2005, pp. 847-63.

    Google Scholar 

  61. R. Chaudhary, G.-g. Lee, B.G. Thomas, and S.-H. Kim: Metall. Mater. Trans. B, 2008, vol. 39B, pp. 870-84.

    Article  CAS  Google Scholar 

  62. M. Yemmou, M.A.A. Azouni, and P. Casses: J. Cryst. Growth, 1993, vol. 128, no. 4, pp. 1130-36.

    Article  CAS  Google Scholar 

  63. J.K. Kim and P.K. Rohatgi: Metall. Mater. Trans. B, 1998, vol. 29B, pp. 351-75.

    Google Scholar 

  64. D.M. Stefanescu and A.V. Catalina: ISIJ Int., 1998, vol. 38, no. 5, pp. 503-05.

    Article  CAS  Google Scholar 

  65. Y. Wang, X. Zuo, L. Zhang, S. Li, A. Dong, and L.N.W. Damoah: Proc. of AISTech 2010 Iron & Steel Technology Conference and Exposition, vol. II, AIST, Warrendale, PA, 2010, pp. 793–806.

  66. H. Turkoglu and B. Farouk: ASME Winter Annual Meeting, Dallas, TX, 1990, vol. 100, pp. 31–38.

  67. Y. Wang, X. Zuo, and L. Zhang: 7th International Conference on Clean Steel, Budapest, Hungary, 2007, pp. 161-71.

    Google Scholar 

  68. X. Tian, B. Li, and J. He: Metall. Mater. Trans. B, 2009, vol. 40B, pp. 596-604.

    Article  CAS  Google Scholar 

  69. H. Bai and B.G. Thomas: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 253-67.

    Article  CAS  Google Scholar 

  70. L. Zhang and B.G. Thomas: ISIJ Int., 2003, vol. 43, no. 3, pp. 271-91.

    Article  CAS  Google Scholar 

  71. M.B. Assar, P.H. Dauby, and G.D. Lawson: Steelmaking Conf. Proc., ISS, Warrendale, PA, 2000, vol. 83, pp. 397-411.

    Google Scholar 

  72. Y. Wang and G. Wen: “Slab Casting Quality Control”, Chongqing University, Report, 2006.

  73. D.V.V.D. Plas, C. Platvoet, B. Debiesme, J.-P. Radot, and J.-M. Galpin: 2nd European Continuous Casting Conf., Düsseldorf, Germany, 1994, pp. 109-18.

    Google Scholar 

  74. K. Takatani, K. Nakai, N. Kasai, T. Watanabe, and H. Nakajima: ISIJ Int., 1989, vol. 29, no. 12, pp. 1063-68.

    Article  Google Scholar 

  75. Y. Satou, N. Baba, N. Kasai, A. Mutou, and M. Hanao: AISTech 2009, St. Louis, MO, 2009.

  76. H. Tozawa: Steel Times, 1999, vol. 227, no. 4, pp. 125-27.

    Google Scholar 

Download references

Acknowledgments

This research is supported by the UM Research Board Grant, Laboratory of Green Process Metallurgy and Modeling (GPMM), Material Research Center (MRC), and the Intelligent Systems Center (ISC) at Missouri University of Science and Technology (Missouri S&T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifeng Zhang.

Additional information

Manuscript submitted November 22, 2009.

Appendix

Appendix

The value of k and ε value on the backflow zone of the calculation bottom is important for the result if k-ε turbulence model is applied as discussed in Section III–B–2. Also, the value of solute concentration on the backflow zone will affect the solute transportation. In order to adjust the k, ε and concentration values on the backflow of the bottom. A program was designed to update these values for each step. The main scheme of the program is,

  1. 1.

    Scan the center line on the bottom and obtain the information, for example v, k, ε, and c from the line;

  2. 2.

    Determine the values that can be applied to the backflow zone;

  3. 3.

    Initialize the value to backflow zone and update them at every iteration.

The flow chart of the program is given in Figure 40.

Fig. 40
figure 40

Flow chart

The code and explanation are given as follows

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Zhang, L. Fluid Flow-Related Transport Phenomena in Steel Slab Continuous Casting Strands under Electromagnetic Brake. Metall Mater Trans B 42, 1319–1351 (2011). https://doi.org/10.1007/s11663-011-9554-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-011-9554-x

Keywords

Navigation