Skip to main content
Log in

Electrochemical Behavior of Sintered CuAg4 at. pct Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The electrochemical characteristics of sintered CuAg4 at. pct alloy in different stages of synthesis and thermomechanical treatment were examined by cyclic voltammetry in a NaOH medium. On the voltammograms recorded at the sintered alloy, six current waves can be noticed at the anodic part, and six corresponding current waves are observed at the cathodic part. A possible electrochemical reaction is attributed to each wave. The effect of the potential reversing limit was used to distinguish the correlation between the anodic and cathodic peaks. After the deformation with 60 pct deformation degree, the alloy becomes more corrosion resistant, whereas the corrosion mechanism remains the same as before mechanical treatment. Subsequent anneal of the deformed alloy at 533 K (260 °C) for 150 minutes leads to the hardening effect. At the same time, the alloy remains corrosion stable, and some of the current waves present at the other voltammograms are hardly noticeable here. Also, we propose our own model of oxide layer formation on the surface of a Cu-Ag alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.J. Lee, S.W. Lee, K.H. Kim, J.H. Hahn, and J.C. Lee: Scripta Mater., 2007, vol. 56, pp. 457-60.

    Article  CAS  Google Scholar 

  2. S. Strehle, S. Menzel, H. Wendrock, J. Acker, T. Gemming, and K. Wetzig: Microelectron. Eng., 2004, vol. 76, pp. 205-11.

    Article  CAS  Google Scholar 

  3. J. Groza: J. Mater. Eng. Perform., 1992, vol. 1, pp. 113-21.

    Article  CAS  Google Scholar 

  4. A. Varchavsky and E. Donoso: Mater. Lett. 1997, vol. 31, pp. 239-45.

    Article  Google Scholar 

  5. S. Nestorović, I. Rangelov, and D. Marković: Powder Metall., April 30, 2009.

  6. O.A. Hazzazi, A.M. Zaky, M.A. Amin, and S.S. Abd El Rehim: Int. J. Electrochem. Sci., 2008, vol. 3, pp. 489-508.

    CAS  Google Scholar 

  7. F.H. Assaf, A.M. Zaky, and S.S. Abd El-Rehim: Appl. Surf. Sci., 2002, vol. 18, pp. 18-27.

    Article  Google Scholar 

  8. M. Rajčić-Vujasinović, S. Nestorović, I. Rangelov, V. Grekulović, and S. Simov: Proc. 7th Int. Scientific Conf. Prod. Eng., Cairo, Egypt, RIM 2009, pp. 39–42.

  9. S.M. Skogvold, Ø. Mikkelsen, G. Billon, C. Garnier, and L. Lesven: Anal. Bioanal. Chem., 2006, vol. 384, pp. 1567-77.

    Article  CAS  PubMed  Google Scholar 

  10. H.H. Strehblow, V. Maurice, and P. Marcus: Electrochim. Acta, 2001, vol. 46, pp. 3755-66.

    Article  CAS  Google Scholar 

  11. H. H. Strehblow and B. Titze: Electrochim. Acta, 1980, vol. 25, pp. 839-50.

    Article  CAS  Google Scholar 

  12. J. Kunze, V. Maurice, L.H. Klein, H.H. Strehblow, and P. Marcus: Corros. Sci., 2004, vol. 46, pp. 245-64.

    Article  CAS  Google Scholar 

  13. J.G. Becerra, R.C. Salvarezza, and A.J. Arvia: Electrochim. Acta., 1988, vol. 33, pp. 613-21.

    Article  CAS  Google Scholar 

  14. N. Ikemiya, T. Kubo, and S. Hara: Surf. Sci., 1995, vol. 323, pp. 81-90.

    Article  CAS  ADS  Google Scholar 

  15. M. Shirkhanzadeh, G.E. Thompson, and V. Ashworth: Corros. Sci., 1990, vol. 31, pp. 293-98.

    Article  CAS  Google Scholar 

  16. J. Kunze, V. Maurice, L.H. Klein, H.H. Strehblow, and P. Marcus: J. Electroanal. Chem., 2003, vol. 554-5, pp. 113-25.

    Article  Google Scholar 

  17. D. Tromans and R. Sun: J. Electrochem. Soc ., 1992, vol. 139, pp. 1945-51.

    Article  CAS  Google Scholar 

  18. V. D. Jović and B. M. Jović: J. Electroanal. Chem., 2003, vol. 541, pp. 13-21.

    Article  Google Scholar 

  19. M. M. Antonijević, S. C. Alagić, M. B. Petrović, M. B. Radovanović, and A. T. Stamenković, Int. J. Electrochem. Sci., 2009, vol. 4, pp. 516-24.

    Google Scholar 

  20. J. Kunze, V. Maurice, L. H. Klein, H.-H. Strehblow, and P. Marcus: Electrochim. Acta., 2003, vol. 48, pp. 1157-67.

    CAS  Google Scholar 

  21. S. Nakayama, T. Kaji, T. Notoya, and T. Osakai: Electrochim. Acta, 2008, vol. 53, pp. 3493-99.

    Article  CAS  Google Scholar 

  22. S. Milić and M.M. Antonijević: Corros. Sci., 2009, vol. 51, pp. 28-34.

    Article  Google Scholar 

  23. G.T. Burstein and R.C. Newman: Appl. Surf. Science, 1980, vol. 4, pp. 162-73.

    Article  CAS  Google Scholar 

  24. R.C. Newman and G.T. Burstein: Corros. Sci., 1980, vol. 20, pp. 375-81.

    Article  CAS  Google Scholar 

  25. V.D. Jović, A.R. Despić, J.S. Stevanović, and S. Spaić: Electrochim. Acta, 1989, vol. 34, pp. 1093-102.

    Article  Google Scholar 

  26. J. Zhang, M. An, and L. Chang: Electrochim. Acta, 2009, vol. 54, pp. 2883-89.

    Article  CAS  Google Scholar 

  27. A.M. Zaky, F.H. Assaf, S.S. Abd El Rehim, and B.M. Mohamd: Appl. Surf. Sci., 2004, vol. 221, pp. 349-57.

    Article  CAS  ADS  Google Scholar 

  28. B.M. Jović and V.D. Jović: J. Serb. Chem. Soc., 2004, vol. 69, pp. 153-66.

    Article  Google Scholar 

  29. T. Uk Hur and W. Sub Chung: J. Electrochem. Soc., 2005, vol. 152, pp. A179-85.

    Article  Google Scholar 

  30. J. Ambrose and R.G. Barradas: Electrochim. Acta, 1974, vol. 19, pp. 781-86.

    Article  CAS  Google Scholar 

  31. B.M. Jović, V.D. Jović, and G.R. Stafford, Electrochem. Commun., 1999, vol. 1, pp. 247-51.

    Article  Google Scholar 

  32. G.T. Burstein and R.C. Newman: Electrochim. Acta, 1980, vol. 25, pp. 1009-13.

    Article  CAS  Google Scholar 

  33. J.M.M. Droog: J. Electroanal. Chem., 1980, vol. 115, pp. 225-33.

    Article  CAS  Google Scholar 

  34. N. Iwasaki, Y. Sasaki, and Y. Nishina, Surf. Sci., 1985, vol. 158, pp. 352-58.

    Article  CAS  ADS  Google Scholar 

  35. D. Hecht and H.-H. Strehblow: J. Electroanal. Chem., 1997, vol. 440, pp. 211-17.

    CAS  Google Scholar 

  36. D. Hecht, P. Borthen, and H.-H. Strehblow: Surf. Sci., 1996, vol. 365, pp. 263-77.

    Article  CAS  ADS  Google Scholar 

  37. J. Kunze, H.-H. Strehblow, and G. Staikov: Electrochem. Commun., 2004, vol. 6, pp. 132-37.

    Article  CAS  Google Scholar 

  38. G.T. Burstein and R.D.K. Misra: Electrochim. Acta, 1983, vol. 28, pp. 371-77.

    Article  CAS  Google Scholar 

  39. G.T. Burstein and R.D.K. Misra: Electrochim. Acta, 1983, vol. 28, pp. 363-69.

    Article  CAS  Google Scholar 

  40. S. Mayer and R.H. Muller: J. Electrochem. Soc., 1988, vol. 135, pp. 2133-42.

    Article  CAS  Google Scholar 

  41. J.G. Becerra, R.C. Salvarezza, and A.J. Arvia: Electrochim. Acta, 1988, vol. 33, pp.1431-37.

    Article  Google Scholar 

  42. M. Pourbaix: Atlas D’equilibres Electrochimiques, Gauthier-Villars et Cie, Paris, France, 1963, pp. 384-95.

    Google Scholar 

  43. Z. Stević, Z. Anđelković, and D. Antić: Sensors, 2008, vol. 8, pp. 1819-31.

    Article  Google Scholar 

  44. E. R. Savinova, D. Zemlyanov, B. Pettinger, A. Schveybal, R. Schlögl, and K. Doblhofer: Electrochim. Acta, 2000, vol. 46, pp. 175-83.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Rajčić-Vujasinović.

Additional information

Manuscript submitted January 15, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajčić-Vujasinović, M., Nestorović, S., Grekulović, V. et al. Electrochemical Behavior of Sintered CuAg4 at. pct Alloy. Metall Mater Trans B 41, 955–961 (2010). https://doi.org/10.1007/s11663-010-9405-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-010-9405-1

Keywords

Navigation