Skip to main content
Log in

Heat-transfer enhancement using weakly ionized, atmospheric pressure plasma in metallurgical applications

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Experimental measurements and computational analysis of heat transfer in atmospheric pressure, midtemperature range (1200 to 1600 K) plasma flow over an aluminum cylinder have been carried out. A comparison of transient temperature measurements for the aluminum cylinder under convective unionized air flow and those with convective plasma flow shows significantly higher heat transfer from plasma flow compared to air flow under identical temperature and flow conditions. A heattransfer problem is computationally modeled by using available experimental measurements of temperature rise in the cylinder to determine the degree of ionization in the plasma flow. The continuity, momentum, and energy conservation equations, as well as conservation equations for electrons and ions, and the Poisson’s equation for self-consistent electric field are solved in the plasma by a finite volume method. The conjugated transient heat transfer in the cylinder and in the plasma is obtained by simultaneous solution of the transient energy conservation equations. It is shown that the enhancement of heat transfer in plasma flow is due to the energy deposited by charged species during recombination reaction at the solid surface. An important finding is that even a small degree of ionization (<1 pct) provides significant enhancement in heat transfer. This enhancement in heat transfer can lead to a productivity increase in metallurgical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R.W. Smith, D. Wei, and D. Apelian: Plasma Chem. Plasma Processing, 1989, vol. 9, pp. 135–65.

    Article  Google Scholar 

  2. P.S. Ayyaswamy and I.M. Cohen: Annual Review of Heat Transfer—Vol. 12, Hemisphere Publishing, New York, NY, 2002, pp. 27–78.

    Google Scholar 

  3. M.I. Boulos, P. Fauchais, and E. Pfender: Thermal Plasmas: Fundamentals and Applications, Plenum Press, New York, NY, 1994, vol. 1, pp. 22–43.

    Google Scholar 

  4. S.R. Sheshadri: Fundamentals of Plasma Physics, Elsevier Publishing, New York, NY, 1973, pp. 76–83.

    Google Scholar 

  5. M.A. Hader and M.A. Jog: Phys. Plasmas, 1998, vol. 5, pp. 902–09.

    Article  CAS  Google Scholar 

  6. M.A. Jog and L. Huang: J. Heat Transfer, 1996, vol. 118, pp. 471–77.

    CAS  Google Scholar 

  7. Y.P. Chyou and E. Pfender: Plasma Chem. Plasma Proc., 1989, vol. 9, pp. 45–71.

    Article  Google Scholar 

  8. E. Laveroni and E. Pfender: Int. J. Heat Mass Transfer, 1990, vol. 33, pp. 1497–509.

    Article  Google Scholar 

  9. R.M. Young and E. Pfender: Plasma Chem. Plasma Proc., 1987, vol. 7, pp. 211–26.

    Article  CAS  Google Scholar 

  10. P. Proulx, J. Mostaghimi, and M. Boulos: Int. J. Heat Mass Transfer, 1985, vol. 28 (7), pp. 1327–36.

    Article  CAS  Google Scholar 

  11. X. Chen: J. Phys. D: Appl. Phys., 1997, vol. 30, pp. 1885–92.

    Article  CAS  Google Scholar 

  12. A.G. Gnedovets and A.A. Uglov: Plasma Chem. Plasma Proc., 1992, vol. 12, pp. 383–401.

    Article  CAS  Google Scholar 

  13. P.M. Chung, L. Talbot, and K.J. Touryan: Electric Probes in Stationary and Flowing Plasmas: Theory and Applications, Spinger, Berlin, 1975, pp. 39–78.

    Google Scholar 

  14. S.V. Patankar: Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing, New York, NY, 1980, pp. 79–131.

    Google Scholar 

  15. S.C. Brown: Basic Data of Plasma Physics, MIT Press, Cambridge, MA, 1966, pp. 88–89.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajamani, V., Anand, R., Reddy, G.S. et al. Heat-transfer enhancement using weakly ionized, atmospheric pressure plasma in metallurgical applications. Metall Mater Trans B 37, 565–570 (2006). https://doi.org/10.1007/s11663-006-0040-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-006-0040-9

Keywords

Navigation