Skip to main content
Log in

Numerical simulation of the molten-pool formation during the laser surface-melting process

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The boundary-fixing method, by which the moving-boundary problem is reduced into the fixedboundary problem, has been applied to the numerical simulation of the molten-pool formation during the laser surface-melting process. A mathematical formulation and corresponding calculation scheme are developed for a model based on transient three-dimensional heat conduction with a moving solid-liquid interface. By the use of the boundary-fixing method, the heat balance at the solid-liquid interface is rigorously treated in the present numerical simulation. When the steady state is reached, the resulting molten pool is obtained without undulation in shape. The calculated results, based on an Al-32.7 wt pct Cu eutectic alloy, are discussed and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

beam radius (defined as the radial distance at which the power density falls to 1/e of the central value) (m)

B(θ, φ):

shape function of the outer boundary within the heat-affected region (m)

d :

maximum depth of the molten pool (m)

D :

distance between the origin of the spherical coordinate system and the center of the laser beam (m)

F(θ, φ, t):

shape function of the solid-liquid interface (m)

g(x):

shape function of the solidification front (m)

h :

surface heat-transfer coefficient (W/m2/K)

H :

height from the bottom of the laser trace (m)

K :

thermal conductivity (W/m/K)

L :

latent heat (J/m3)

N η :

number of nodal points in the η direction

N ξ :

number of nodal points in the ξ direction

N θ :

number of nodal points in the θ direction

N φ :

number of nodal points in the φ direction

P :

total incident power in the laser beam (W)

q :

power-density distribution in the laser beam (W/m2)

r :

radial coordinate (m)

t :

time (s)

T :

temperature (K)

T a :

ambient temperature (K)

T B :

temperature on the outer boundary of the heat-affected region (K)

T eu :

eutectic temperature (K)

T f :

temperature at the solid-liquid interface, equal to T eu (K)

T i :

initial temperature of the substrate (K)

T v :

vaporization temperature (K)

U :

beam travel velocity (m/s)

V s :

local solidification rate (m/s)

w :

maximum width of the molten pool (m)

x, y, and z :

spatial coordinates (m)

α :

thermal diffusivity (m2/s)

β :

surface absorptivity (—)

Δt :

time step for calculation (s)

Δt F :

time step defined by Eq. [39] (s)

Δt L :

time step defined by Eq. [37] (s)

Δt s :

time step defined by Eq. [38] (s)

Δη :

spatial increment in the η direction, equal to 1/N η (—)

Δξ :

spatial increment in the ξ direction, equal to 1/N ξ (—)

Δθ :

spatial increment in the θ direction, equal to π/(N θ−1) (radians)

Δφ :

spatial increment in the φ direction, equal to π/(2N φ −1) (radians)

ɛ :

surface emissivity, equal to 1 - β, (—)

η :

independent variable (Eq. [13]) (—)

θ :

angle in spherical coordinate (radians)

θ o :

reference angle, equal to π (radians)

λ :

interlamellar spacing (m)

ξ :

independent variable (Eq. [14]) (—)

σ :

Stefan-Boltzmann constant, equal to 5.67·10−8 (W/m2/K4)

φ :

angle in spherical coordinate (radians)

φ o :

reference angle equal to π/2 (radians)

ϕ :

angle between the vectors V s and U (radians)

L :

liquid region

S :

solid region

O :

reference quantity, average of those of the liquid and solid regions

*:

dimensionless quantity

i, j, k, and l :

nodal-point indices in the η, ξ, θ, and φ directions, respectively

References

  1. W.M. Steen: Laser Material Processing, Springer-Verlag, London, 1994, pp. 187–92.

    Google Scholar 

  2. M. Zimmermann, M. Carrard, and W. Kurz: Acta Metall., 1989, vol. 37, pp. 3305–13.

    Article  CAS  Google Scholar 

  3. Y. Nakano, K. Nishimoto, W.P. Zhang, and Y. Tamura: Q. J. JWS, 1991, vol. 9, pp. 122–28 (in Japanese).

    Google Scholar 

  4. W. Kurz and R. Trivedi: Mater. Sci. Eng., 1994, vols. A179–A180, pp. 46–51.

    Google Scholar 

  5. W. Kurz, B. Giovanola, and R. Trivedi: Acta Metall., 1986, vol. 34, pp. 823–30.

    Article  CAS  Google Scholar 

  6. D.C. Baxter: J. Heat Transfer. Trans. ASME, 1962, vol. 84, pp. 317–26.

    CAS  Google Scholar 

  7. K. Katayama and M. Hattori: Trans. Jpn. Soc. Mech. Eng., 1974, vol. 40, pp. 1404–11.

    Google Scholar 

  8. N. Shamsundar and E.M. Sparrow: J. Heat Transfer. Trans. ASME, 1975, vol. 97, pp. 333–40.

    ADS  Google Scholar 

  9. A.B. Crowley: Int. J. Heat Mass Transfer, 1978, vol. 21, pp. 215–19.

    Article  Google Scholar 

  10. M. Paolini, G. Sacchi, and C. Verdi: Int. J. Numer. Meth. Eng., 1988, vol. 26, pp. 1989–2007.

    Article  MATH  MathSciNet  Google Scholar 

  11. S. Kou, S. Hsu, and R. Mehrabian: Metall. Trans. B, 1981, vol. 12B, pp. 33–45.

    CAS  Google Scholar 

  12. K.V. Rama Rao and J.A. Sekhar: Acta Metall., 1987, vol. 35, pp. 81–87.

    Article  Google Scholar 

  13. A.F.A. Hoadley, M. Rappaz, and M. Zimmermann: Metall. Trans. B, 1991, vol. 22B, pp. 101–09.

    CAS  Google Scholar 

  14. J.L. Duda, F.M. Michael, H.N. Robert, and J.S. Vrentas: Int. J. Heat Mass Transfer, 1975, vol. 18, pp. 901–10.

    Article  Google Scholar 

  15. T. Saitoh: J. Heat Transfer: Trans. ASME, 1978, vol. 100, pp. 294–99.

    Google Scholar 

  16. D. Rosenthal: Trans. ASME, 1946, vol. 68, pp. 849–66.

    Google Scholar 

  17. C.F. Gerald and P.O. Wheatley: Applied Numerical Analysis, Addison-Wesley Longman, Reading, MA, (1991), pp. 455–59.

    Google Scholar 

  18. P.J. Roache: Computational Fluid Dynamics, Hermosa Pub. Inc., Albuquerque, NM, 1976, p. 97 (Japanese translation).

    Google Scholar 

  19. T.B. Massalski: Binary Alloy Phase Diagrams, ASM, Metals Park, OH, 1986, vol. 1, pp. 103–08.

    Google Scholar 

  20. L.F. Mondolfo: Aluminum Alloys: Structure and Properties, 1st ed., Butterworth and Co., London, 1976, p. 56.

    Google Scholar 

  21. M.H. Burden and H. Jones: J. Inst. Met., 1970, vol. 98, pp. 249–52.

    CAS  Google Scholar 

  22. M. Gündüz and J.D. Hunt: Acta Metall., 1985, vol. 33, pp. 1651–72.

    Article  Google Scholar 

  23. A. Frenk, A.F.A. Hoadley, and J.-D. Wagnière: Metall. Trans. B, 1991, vol. 22B, pp. 139–41.

    CAS  Google Scholar 

  24. A.M. Prokhorov, V.I. Konov, I. Ursu, and I.N. MihĂilescu: Laser Heating of Metals, Adam Hilger, Bristol, 1990, p. 209.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeshita, K., Matsunawa, A. Numerical simulation of the molten-pool formation during the laser surface-melting process. Metall Mater Trans B 32, 949–959 (2001). https://doi.org/10.1007/s11663-001-0081-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-001-0081-z

Keywords

Navigation