Skip to main content
Log in

A model for microstructure evolution in adiabatic shear bands

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A mechanical subgrain rotation model is proposed to account for the recrystallized grains which have been observed to form in adiabatic shear bands in a number of materials. The model is based on a “bicrystal” approach using crystal plasticity theory to predict the evolution of subgrain misorientations. These mechanically induced rotations are shown to occur at the high strain rate associated with adiabatic shear band formation. Recrystallized grain formation is proposed to occur by the formation and mechanical rotation of subgrains during deformation, coupled with boundary refinement via diffusion during shear band cooling. This model is referred to as progressive subgrain misorientation recrystallization and appears to account for shear band microstructures in a variety of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Bai and B. Dodd: Adiabatic Shear Localization: Occurrence, Theories and Applications, Pergamon Press, Oxford, United Kingdom, 1992.

    Google Scholar 

  2. H.J. McQueen: Mater. Sci. Forum, 1992, vols. 113–115, pp. 429–34.

    Google Scholar 

  3. H.J. McQueen, E. Evangelista, and N.D. Ryan: in Recrystallization ’90, T. Chandra, ed., TMS, Warrendale, PA, 1990, pp. 89–100.

    Google Scholar 

  4. M.A. Meyers and H-R Pak: Acta Metall., 1986, vol. 34, pp. 2493–499.

    Article  CAS  Google Scholar 

  5. M.A. Meyers, G Subhash, B.K. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175–93.

    Article  Google Scholar 

  6. M.A. Meyers, L.W. Meyers, K.S. Vecchio, and U. Andrade: J. Phys., 1991, vol. 18, pp. 11–17.

    Google Scholar 

  7. R.W. Chen: Microstructural Characterization of Shear Band Formation in Al-Li Alloys, University of California, San Diego, La Jolla, CA, 1993.

    Google Scholar 

  8. A.H. Chokshi and M.A Meyers: Scripta Metall. Mater., 1990, vol. 24, pp. 605–10.

    Article  CAS  Google Scholar 

  9. U. Andrade, M.A. Meyers, K.S. Vecchio, and A.H. Chokshi: Acta Metall. Mater., 1994, vol. 42, pp. 3183–93.

    Article  CAS  Google Scholar 

  10. J.A. Hines and K.S. Vecchio: in Metallurgical and Materials Applications of Shock-Wave and High-Strain-Rate Phenomena, L.E. Murr, K.P. Staudhammer, and M.A. Meyers, eds., Elsevier, New York, NY, 1995, pp 421–28.

    Google Scholar 

  11. J.A. Hines and K.S. Vecchio: Acta Metall. Mater., 1997, vol. 45 (2), pp. 635–49.

    CAS  Google Scholar 

  12. J.C.M. Li: J. Appl. Phys., 1962, vol. 33, pp. 2958–65.

    Article  CAS  Google Scholar 

  13. R.D. Doherty and J.A. Szpunar: Acta Metall., 1984, vol. 32, pp. 1789–98.

    Article  CAS  Google Scholar 

  14. B. Derby and M.F. Ashby: Scripta Metall., 1987, vol. 21, pp. 879–84.

    Article  CAS  Google Scholar 

  15. B. Derby: Acta Metall. Mater., 1991, vol. 39, pp. 955–62.

    Article  CAS  Google Scholar 

  16. B. Derby: Scripta Metall. Mater., 1992, vol. 27, pp. 1581–86.

    Article  CAS  Google Scholar 

  17. K.S. Vecchio: J. Phys. IV, 1994, vol. 4, pp. 301–06.

    Google Scholar 

  18. J.A. Hines: Dynamic Recrystallization in Adiabatic Shear Bands, University of California, San Diego, La Jolla, CA, 1996.

    Google Scholar 

  19. M.A. Meyers: Dynamic Behavior of Materials, John Wiley & Sons, Inc., New York, NY, 1994.

    Google Scholar 

  20. B. Bay, N. Hansen, D.A. Hughes, and D. Kuhlmann-Wilsdorf: Acta Metall. Mater., 1992, vol. 40, pp. 205–19.

    Article  CAS  Google Scholar 

  21. E. Nes, A.L. Dons, and N. Ryum: in Strength of Metals and Alloys, R.C. Gifkins, eds., Pergamon Press, Elmsford, NY, 1982, pp. 425–30.

    Google Scholar 

  22. A. Korbel and K. Swiatkowski: Met. Sci. J. 1972, vol. 6, pp. 60–63.

    Article  CAS  Google Scholar 

  23. D. Griffiths and J.N. Riley: Acta Metall., 1966, vol. 14, pp. 755–73.

    Article  CAS  Google Scholar 

  24. R.K. Ray, W.B. Hutchinson, and B.J. Duggan: Acta Metall., 1975, vol. 23, pp. 831–39.

    Article  CAS  Google Scholar 

  25. G. Langford and M. Cohen: Metall. Trans., 1975, vol. 6A, pp. 901–10.

    CAS  Google Scholar 

  26. D.A. Hughes and N. Hansen: Metall. Trans. A, 1993, vol. 24A, pp. 2021–37.

    CAS  Google Scholar 

  27. D.A. Hughes and N. Hansen: Scripta Metall. Mater., 1995, vol. 33, pp. 315–21.

    Article  CAS  Google Scholar 

  28. D.A. Hughes: in Aluminum Alloys for Packaging II, J.G. Morris, S.K. Das, and H.S. Goodrich, eds., TMS, Warrendale, PA, 1996, pp. 129–44.

    Google Scholar 

  29. D.A. Hughes, Q. Liu, D.C. Chrzan, and N. Hansen: Acta Mater., 1997, vol. 45, pp. 105–12.

    Article  CAS  Google Scholar 

  30. D.A. Hughes: 16th Risø Int. Symp. on Materials Science: Microstructural and Crystallographic Aspects of Recrystallization, Risø, Denmark, N. Hansen, D. Juule Jensen, Y.L. Liu, and B. Ralph, eds., Riso National Lab., Roskilde, Denmark 1995, pp. 63–85.

    Google Scholar 

  31. J. Flaquer and J. Gil Sevillano: J. Mater. Sci., 1984, vol. 19, pp. 423–27.

    Article  CAS  Google Scholar 

  32. S. White: Nature, 1973, vol. 244, pp. 276–78.

    Article  CAS  Google Scholar 

  33. M. Guillope and J.P. Poirer: J. Geophys. Res., 1979, vol. 84, pp. 5557–67.

    Article  Google Scholar 

  34. T.S. Olsen and D.L. Kohlstedt: Tectonophysics, 1985, vol. 111, pp. 107–31.

    Article  CAS  Google Scholar 

  35. M.R. Drury and J.L. Urai: Tectonophysics, 1990, vol. 172, pp. 235–53.

    Article  Google Scholar 

  36. P. Duval and O. Castelnau: J. Phys. IV, Coll. C3, 1995, vol. 5, pp. 197–205.

    Google Scholar 

  37. G.R. Canova, C. Fressengeas, A. Molinari, and U.F. Kocks: Acta Metall., 1988, vol. 36, pp. 1961–70.

    Article  Google Scholar 

  38. A. Korbel and K. Swiatkowski: Met. Sci. J., 1972, vol. 6, pp. 60–63.

    Article  CAS  Google Scholar 

  39. S. Ahzi, D.M. Parks, and A.S. Argon: in Computer Modeling and Simulation of Manufacturing Processes, G. Singh, Y.T. Im, I. Haque, and C. Atlan, eds., ASME, Fairfield, NJ, 1990, vol. 20, pp. 287–92.

    Google Scholar 

  40. B.J. Lee, D.M. Parks, and S. Ahzi: J. Mech. Phys. Solids, 1993, vol. 41, pp. 1651–87.

    Article  CAS  Google Scholar 

  41. C.A. Bronkhorst, S.R. Kalidindi, and L. Anand: Phil. Trans R. Soc. London, 1992, vol. 341, pp. 443–77.

    CAS  Google Scholar 

  42. B.J. Lee, K.S. Vecchio, S. Ahzi, and S. Shoenfeld: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 113–22.

    CAS  Google Scholar 

  43. F.B. Prinz and A.S. Argon: Acta Metall., 1984, vol. 32, pp. 1021–28.

    Article  CAS  Google Scholar 

  44. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Monographs on the Physics and Chemistry of Materials, R.J. Brook, A. Cheetham, A. Hauer, Sir P. Hirsch, T.J. Marks, J. Silcox, D.A. Smith, M.V. Tirrell, V. Vitek, eds., Clarendon Press, Oxford, United Kingdom, 1995, pp. 95–96.

    Google Scholar 

  45. R. Sandström: Acta Metall., 1977, vol. 25, pp. 897–904.

    Article  Google Scholar 

  46. R. Sandström: Acta Metall., 1977, vol. 25, pp. 905–11.

    Article  Google Scholar 

  47. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, United Kingdom, 1982.

    Google Scholar 

  48. D. Kuhlmann-Wilsdorf and J.H. Van Der Merwe: Mater. Sci. Eng., 1982, vol. 55, pp. 79–83.

    Article  Google Scholar 

  49. D. Kuhlmann-Wilsdorf and N.R. Cumins: Mater. Sci. Eng., 1983, vol. 60, pp. 7–24.

    Article  CAS  Google Scholar 

  50. P.J. Jackson and D. Kuhlmann-Wilsdorf: Scripta Metall., 1982, vol. 16, pp. 105–07.

    Article  CAS  Google Scholar 

  51. J. Gil Sevillano, P. van Houtte, and E. Aernoudt: Progr. Mater. Sci., 1980, vol. 25, pp. 69–412.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hines, J.A., Vecchio, K.S. & Ahzi, S. A model for microstructure evolution in adiabatic shear bands. Metall Mater Trans A 29, 191–203 (1998). https://doi.org/10.1007/s11661-998-0172-4

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0172-4

Keywords

Navigation