Skip to main content
Log in

Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The kinetics of homogeneous and heterogeneous static recrystallization in a single-phase material were analyzed using two-dimensional (2-D) and three-dimensional (3-D) cellular automata (CA). A CA model was developed, which was then validated using the theory based on relationships developed by Johnson and Mehl, Avrami, and Kolmogorov (JMAK) for homogeneous site-saturated and constant-rate nucleation. The model was then modified for heterogeneous nucleation at grain boundaries, with either a fixed number of nuclei or a constant rate of nucleation. The fraction of boundary sites nucleated, for the case of fixed nucleation, varied from 0.006 to 0.28, resulting in Avrami exponents (k) ranging from 1.8 to 1.1 (site saturation). Site saturation with fixed nucleation produced a lamellar microstructure. The parameters of q and m, from Vandermeer’s microstructural path method, were calculated and compared with theoretical values. Constant-rate nucleation at grain boundaries between newly recrystallized grains and the unrecrystallized matrix resulted in k values of ≈1. Simulated microstructures revealed that with a low nucleation rate, recrystallized grains formed in clusters, while a high nucleation rate resulted in a necklace microstructure, with kinetics similar to those observed in dynamic recrystallization (k=1.4).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Min. Eng., 1939, vol. 135, pp. 416–30.

    Google Scholar 

  2. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103–09; 1940, vol. 8, pp. 212–24; 1941, vol. 9, pp. 177–84.

    Article  CAS  Google Scholar 

  3. A.E. Kolmogorov: Akad. Naul SSSR, Izv., Ser. Mater., 1937, vol. 1, pp. 355–59.

    Google Scholar 

  4. J.W. Cahn: Acta Metall., 1956, vol. 4, pp. 449–59.

    Article  CAS  Google Scholar 

  5. R.A. Vandermeer and Paul Gordon: Trans. TMS-AIME, 1959, vol. 215, pp. 577–88.

    CAS  Google Scholar 

  6. B.F. Decker and D. Harker: Trans. AIME, J. Met., 1950, vol. 188, pp. 887–90.

    CAS  Google Scholar 

  7. C.W. Price: Acta Metall. Mater., 1990, vol. 38, pp. 727–38.

    Article  CAS  Google Scholar 

  8. A.D. Rollet, D.J. Srolovitz, R.D. Doherty, and M.P. Anderson: Acta Metall., 1989, vol. 37, pp. 627–39.

    Article  Google Scholar 

  9. H.W. Hesselbarth and I.R. Göbel: Acta Metall. Mater., 1991, vol. 39, pp. 2135–43.

    Article  CAS  Google Scholar 

  10. H.W. Hesselbarth, L. Kaps, and F. Haessner: Mater. Sci. Forum, 1993, vols. 113–115, pp. 317–22.

    Article  Google Scholar 

  11. D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1986, vol. 34, pp. 1833–45.

    Article  CAS  Google Scholar 

  12. D.J. Srolovitz, G.S. Grest, M.P. Anderson, and A.D. Rollet: Acta Metall., 1988, vol. 36, pp. 2115–28.

    Article  CAS  Google Scholar 

  13. R.A. Vandermeer and B.B. Rath: Metall. Trans. A, 1989, vol. 20A, pp. 391–401.

    CAS  Google Scholar 

  14. R.A. Vandermeer, R.A. Masumura, and B.B. Rath: Acta Metall. Mater., 1991, vol. 39, pp. 383–89.

    Article  CAS  Google Scholar 

  15. R.A. Vandermeer and R.A. Masumura: Acta Metall. Mater., 1992, vol. 40, pp. 877–86.

    Article  CAS  Google Scholar 

  16. R.A. Vandermeer: Scripta Metall. Mater, 1992, vol. 27, pp. 1563–68.

    Article  CAS  Google Scholar 

  17. R.A. Vandermeer and D. Juul Jensen: Acta Metall. Mater., 1994, vol. 42, pp. 2427–36.

    Article  CAS  Google Scholar 

  18. R.A. Vandermeer and D. Juul Jensen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2227–35.

    CAS  Google Scholar 

  19. R.A. Vandermeer and B.B. Rath: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1513–18.

    CAS  Google Scholar 

  20. C.W. Price: Acta Metall., 1987, vol. 35, pp. 1377–90.

    Article  CAS  Google Scholar 

  21. C.W. Price: Acta Metall. Mater., 1991, vol. 39, pp. 1807–16.

    Article  Google Scholar 

  22. D. Juul Jensen: Scripta Metall. Mater., 1992, vol. 27, pp. 1551–56.

    Article  Google Scholar 

  23. D. Juul Jensen: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 15–25.

    Google Scholar 

  24. N.X. Sun, X.D. Liu, and K. Lu: Scripta Mater., 1996, vol. 34, pp. 1201–07.

    Article  CAS  Google Scholar 

  25. K.J. Kurzydlowski, B. Ralph, A. Chojnacka, and J.J. Bucki: Acta Mater., 1996, vol. 44, pp. 3005–13.

    Article  CAS  Google Scholar 

  26. P.L. Orsetti Rossi and C.M. Sellars: Acta Mater., 1997, vol. 45, pp. 137–48.

    Article  Google Scholar 

  27. C.F. Pezzee and D.C. Dunand: Acta Metall. Mater., 1994, vol. 42, pp. 1509–24.

    Article  CAS  Google Scholar 

  28. C.H.J. Davies: Scripta Metall. Mater., 1995, vol. 33, pp. 1139–43.

    Article  CAS  Google Scholar 

  29. C.H.J. Davies: Scripta Mater., 1997, vol. 36, pp. 35–40.

    Article  CAS  Google Scholar 

  30. M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni: Acta Metall, 1984, vol. 32, pp. 783–91.

    Article  CAS  Google Scholar 

  31. D.J. Srolovitz, G.S. Grest, and M.P. Anderson: Acta Metall., 1985, vol. 33, pp. 2233–47.

    Article  CAS  Google Scholar 

  32. A.D. Rollet, D.J. Srolovitz, and M.P. Anderson: Acta Metall., 1989, vol. 37, pp. 1227–40.

    Article  Google Scholar 

  33. R.D. Doherty, K. Li, M.P. Anderson, A.D. Rollet, and D.J. Srolovitz: in Recrystallization ’90, T. Chandra, ed., TMS, Warrendale, PA, 1990, pp. 129–50.

    Google Scholar 

  34. S. Ling and M.P. Anderson: JOM, 1992, vol. 44, pp. 30–36.

    CAS  Google Scholar 

  35. D.G. Martin: Mater. Sci. Technol., 1994, vol. 10, pp. 855–61.

    CAS  Google Scholar 

  36. Y.U. Novikov and I.S. Gavrikov: Acta Metall. Mater., 1995, vol. 43, pp. 973–76.

    Article  CAS  Google Scholar 

  37. K.W. Mahin, K. Hanson, and J.W. Morris, Jr.: Acta Metall., 1980, vol. 28, pp. 443–53.

    Article  CAS  Google Scholar 

  38. F.J. Humphreys: Mater. Sci. Technol., 1992, vol. 8, pp. 135–43.

    CAS  Google Scholar 

  39. F.J. Humphreys: Scripta Metall. Mater., 1992, vol. 27, pp. 1557–62.

    Article  CAS  Google Scholar 

  40. S. Wolfram: Phys. D, 1984, vol. 10D, pp. vii-xii.

    Article  Google Scholar 

  41. T. Toffoli and N. Margolus: Cellular Automata Machines, The MIT Press, Cambridge, MA, 1987.

    Google Scholar 

  42. J.V. Bee, A.R. Jones, and P.R. Howell: J. Mater. Sci., 1980, vol. 15, pp. 337–44.

    Article  CAS  Google Scholar 

  43. J.M. Cabrera, A. Al Omar, J.J. Jonas, and J.M. Prado: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2233–44.

    CAS  Google Scholar 

  44. P. Shewmon: Transformation in Metals, McGraw-Hill, New York, NY, 1969, pp. 226–28.

    Google Scholar 

  45. W. Roberts, H. Boden, and B. Ahlblom: Met. Sci., 1979, vol. 13, pp. 195–205.

    Article  CAS  Google Scholar 

  46. S.P. Bellier and R.D. Doherty: Acta Metall., 1977, vol. 25, pp. 521–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goetz, R.L., Seetharaman, V. Static recrystallization kinetics with homogeneous and heterogeneous nucleation using a cellular automata model. Metall Mater Trans A 29, 2307–2321 (1998). https://doi.org/10.1007/s11661-998-0108-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-998-0108-z

Keywords

Navigation