Skip to main content
Log in

Plate-shaped transformation products in zirconium-base alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables. Martensites exhibiting dislocated lath, internally twinned plate, and self-accommodating three-plate cluster morphologies have been encountered in Zr-2.5Nb alloy. Habit planes corresponding to all these morphologies have been found to be consistent with the predictions based on the invariant plane strain (IPS) criterion. Different morphologies have been found to reflect the manner in which the neighboring martensite variants are assembled. Lattice-invariant shears (LISs) for all these cases have been identified to be either {10\(\bar 1\)1} α \(\bar 1\)123〉 α slip or twinning on {10\(\bar 1\)1} α planes. Widmanstätten α precipitates, forming in a step-quenching treatment, have been shown to have a lath morphology, the α/β interface being decorated with a periodic array of 〈c + a〉 dislocations at a spacing of 8 to 10 nm. The line vectors of these dislocations are nearly parallel to the invariant lines. The α precipitates, forming in the retained β phase on aging, exhibit an internally twinned structure with a zigzag habit plane. Average habit planes for the morphologies have been found to lie near the {103} β — {113} β poles, which are close to the specific variant of the {112} β plane, which transforms into a prismatic plane of the type {1\(\bar 1\)00} α . The crystallography of the formation of the γ-hydride phase (fct) from both the α and β phases is seen to match the IPS predictions. While the β-γ transformation can be treated approximately as a simple shear on the basal plane involving a change in the stacking sequence, the α-γ transformation can be conceptually broken into a αβ transformation following the Burgers correspondence and the simple β-γ shear process. The active eutectoid decomposition in the Zr-Cu system, βα + β′, has been described in terms of cooperative growth of the α phase from the β phase through the Burgers correspondence and of the partially ordered β′ (structurally similar to the equilibrium Zr2Cu phase) through an ordering process. Similarities and differences in crystallographic features of these transformations have been discussed, and the importance of the invariant line vector in deciding the geometry of the corresponding habit planes has been pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.W. Christian: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1821–39.

    CAS  Google Scholar 

  2. G.C. Weatherly and W.Z. Zhang: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1865–74

    CAS  Google Scholar 

  3. G.R. Purdy and W.Z. Zhang: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1875–83

    CAS  Google Scholar 

  4. J.P. Hirth: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1885–94.

    Google Scholar 

  5. Y. Mou: Metal. Mater. Trans. A, 1994, vol. 25A, pp. 1905–15.

    CAS  Google Scholar 

  6. K. Chattopadhyay and H.I. Aaronson: Acta Metall., 1986, vol. 34, pp. 695–711.

    Article  CAS  Google Scholar 

  7. G. Spanos, H.S. Fang, and H.I. Aaronson: Metall. Trans. A, 1990, vol. 21A, pp. 1381–90.

    CAS  Google Scholar 

  8. J.W. Christian and D.V. Edmonds: Proc. Phase Transformation in Ferrous Alloys, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1984, pp. 293–325.

    Google Scholar 

  9. H.K.D.H. Bhadeshia: Progr. Mater. Sci., 1985, vol. 29, pp. 321–86.

    Article  CAS  Google Scholar 

  10. H.I. Aaronson, W.T. Reynolds, Jr., G.J. Shiflet, and G. Spanos: Metall. Trans. A, 1990, vol. 21A, pp. 1343–80.

    CAS  Google Scholar 

  11. W.G. Burgers: Physica, 1934, vol. 1, pp. 561–86.

    Article  CAS  Google Scholar 

  12. J.S. Bowles and J.K. Mackenzie: Acta Metall., 1957, vol. 5, pp. 137–49.

    Article  Google Scholar 

  13. P. Gaunt and J.W. Christian: Acta Metall., 1959, vol. 7, pp. 534–43.

    Article  CAS  Google Scholar 

  14. Z. Nishiyama: in Martensitic Transformation, Materials Science Series, M.E. Fine, M. Meshii, and C.M. Wayman, eds., Academic Press, New York, NY, 1988.

    Google Scholar 

  15. L. Delaey, M. Chandrasekaran, M. Andrade, and J. van Humbeek: Proc. Solid State Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Pittsburgh, PA, 1982, pp. 1429–53.

    Google Scholar 

  16. E.S.K. Menon, M.R. Plichta, and H.I. Aaronson: Acta Metall., 1988, vol. 36, pp. 321–32.

    Article  CAS  Google Scholar 

  17. T. Furuhara and H.I. Aaronson: Acta Metall. Mater., 1991, vol. 39, pp. 2857–72.

    Article  Google Scholar 

  18. V. Perovic and G.C. Weatherly: Acta Metall., 1988, vol. 37, pp. 813–21.

    Google Scholar 

  19. C.P. Luo and G.C. Weatherly: Acta Metall., 1987, vol. 35, pp. 1963–72.

    Article  CAS  Google Scholar 

  20. W.Z. Zhang and G.R. Purdy: Acta Metall. Mater., 1993, vol. 41, pp. 543–55.

    Article  CAS  Google Scholar 

  21. W.Z. Zhang and G.R. Purdy: Phil. Mag., 1993, vol. 68, pp. 291–303.

    Google Scholar 

  22. A. Kelly and G.W. Grooves: Crystallography and Crystal Defects, Longman, London, 1970.

    Google Scholar 

  23. K.A. Bywater and J.W. Christian: Phil. Mag., 1972, vol. 25, pp. 1249–73.

    CAS  Google Scholar 

  24. D.S. Lieberman, T.A. Read, and M.S. Wechsler: J. Appl. Phys., 1957, vol. 28, pp. 532–41.

    Article  CAS  Google Scholar 

  25. S. Banerjee and R. Krishnan: Acta Metall., 1971, vol. 19, pp. 1317–26.

    Article  CAS  Google Scholar 

  26. D. Srivastava, K. Madangopal, S. Banerjee, and S. Ranganathan: Acta Metall. Mater., 1993, vol. 41, pp. 3445–54.

    Article  CAS  Google Scholar 

  27. U. Dahmen: Acta Metall., 1982, vol. 30, pp. 63–73.

    Article  CAS  Google Scholar 

  28. U. Dahmen, P. Ferguson, and K.H. Westmacott: Acta Metall., 1984, vol. 32, pp. 803–10.

    Article  CAS  Google Scholar 

  29. D.I. Potter: J. Less Common Met., 1973, vol. 31, pp. 299–309.

    Article  CAS  Google Scholar 

  30. S. Banerjee and R. Krishnan: Metall. Trans., 1973, vol. 4, pp. 1811–19.

    CAS  Google Scholar 

  31. J.C. Williams, D.H. Pollonis, and R. Taggart: Proc. Science Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, Oxford, United Kingdom, 1971, pp. 733–43.

    Google Scholar 

  32. H.M. Otte: Proc. Science, Technology and Application of Titanium, R.I. Jaffee and N.E. Promisel, eds., Pergamon Press, Oxford, United Kingdom, 1971, pp. 645–57.

    Google Scholar 

  33. C.M. Hammond and P.M. Kelly: Proc. Science, Technology and Application of Titanium, Pergamon Press, Oxford, United Kingdom, 1971, pp. 659–76.

    Google Scholar 

  34. S. Banerjee, G.K. Dey, P. Mukhopadhyay, and E.S.K. Menon: Proc. Phase Transformation ’87, Institute of Metals, London, 1988, pp. 51–55.

    Google Scholar 

  35. G.K. Dey, R.N. Singh, R. Tewari, D. Srivastava, and S. Banerjee: J. Nucl. Mater., 1995, vol. 224, pp. 146–57.

    Article  CAS  Google Scholar 

  36. S. Banerjee, S.J. Vijaykar, and R. Krishnan: J. Nucl. Mater., 1976, vol. 62, pp. 229–39.

    Article  CAS  Google Scholar 

  37. E.S.K. Menon, S. Banerjee, and R. Krishnan: Metall. Trans. A, 1978, vol. 9A, pp. 1213–20.

    CAS  Google Scholar 

  38. C.P. Luo and G.C. Weatherly: Metall. Trans. A, 1988, vol. 19A, pp. 1153–62.

    CAS  Google Scholar 

  39. G.C. Weatherly: Acta Metall., 1981, vol. 29, pp. 501–12.

    Article  CAS  Google Scholar 

  40. G.K. Dey, S. Banerjee, and P. Mukhopadhyay: J. Phys., 1984, vol. C4, pp. 327–32.

    Google Scholar 

  41. D.O. Northwood and U. Kosasih: Int. Mater. Rev., 1983, vol. 28, pp. 92–121.

    CAS  Google Scholar 

  42. J.S. Bowles, B.C. Muddle, and C.M. Wayman: Acta Metall., 1977, vol. 25, pp. 513–20.

    Article  CAS  Google Scholar 

  43. M.P. Cassidy and C.M. Wayman: Metall. Trans. A, 1980, vol. 11A, pp. 47–56.

    CAS  Google Scholar 

  44. M.P. Cassidy and C.M. Wayman: Metall. Trans. A, 1980, vol. 11A, pp. 57–67.

    CAS  Google Scholar 

  45. D. Srivastava, G.K. Dey, S. Banerjee, and S. Ranganathan: (to be published).

  46. R.I. Jafee: Progr. Met. Phys., 1958, vol. 7, p. 69.

    Google Scholar 

  47. P. Mukhopadhyay, S.K. Menon, S. Banerjee, and R. Krishnan: Metall. Trans. A, 1979, vol. 10A, pp. 1071–84.

    CAS  Google Scholar 

  48. P. Mukhopadhyay: Mater. Sci. Forum, 1985, vol. 3, pp. 247–60.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, S., Dey, G.K., Srivastava, D. et al. Plate-shaped transformation products in zirconium-base alloys. Metall Mater Trans A 28, 2201–2216 (1997). https://doi.org/10.1007/s11661-997-0178-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-997-0178-3

Keywords

Navigation