Abstract
Third generation γ-titanium aluminides with nominal compositions Ti–45Al–5Nb–0.2B–0.2C and Ti–45Al–10Nb–0.2B–0.2C were investigated to identify the phase transformation and their morphological stability with temperature. Electron microscopy and differential scanning calorimetry were employed for the characterization of phases and for recording the corresponding transformations, respectively. It has been inferred that the order–disorder transformation temperatures α2 → α increased with increasing Niobium (Nb), while the α-transus temperature decreases. The stability of the microstructure for both alloys with temperature were also investigated. Mass change measured for the heating rates 20 °C s−1 and 30 °C s−1 reveals that the alloy Ti–45Al–10Nb–0.2–0.2C shows stability up to 1100 °C, and the alloy Ti–45Al–5Nb–0.2B–0.2C is stable up to 900 °C. The orientation relationship between the phases indicates that with the change in shape of the α phase from lamellar to equiaxed, it deviates from the Blackburn orientation relationship.














Similar content being viewed by others
References
D. Daloz, U. Hecht, J. Zollinger, H. Combeau, A. Hazotte, and M. Založnik: Intermetallics., 2011, vol. 19, pp. 749–56.
Y. Wu, K. Hagihara, and Y. Umakoshi: Intermetallics., 2005, vol. 13, pp. 879–84.
U. Hecht, V. Witusiewicz, A. Drevermann, and J. Zollinger: Intermetallics., 2008, vol. 16, pp. 969–78.
R.J.E. Glenny, J.E. Northwood, and A.B. Smith: Int. Mater. Rev., 1975, vol. 20, pp. 1–28.
P.B. Trivedi, E.G. Baburaj, A. Genã, L. Ovecoglu, S.N. Patankar, and F.H. Froes: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 2729–34.
Y. Liang and J. Lin: JOM, 2017, 69.
N. Bibhanshu, A. Bhattacharjee, and S. Suwas: J. Alloys Compd., 2020, vol. 832, p. 154584.
I. Agote, J. Coleto, M. Gutiérrez, A. Sargsyan, M. García de Cortazar, M.A. Lagos, I.P. Borovinskaya, A.E. Sytschev, V.L. Kvanin, N.T. Balikhina, S.G. Vadchenko, K. Lucas, A. Wisbey, and L. Pambaguian: Intermetallics., 2008, vol. 16, pp. 1310–6.
F. Klocke, D. Lung, M. Arft, P.C. Priarone, and L. Settineri: Int. J. Adv. Manuf. Technol., 2013, vol. 65, pp. 155–63.
M.H. Yoo, C.L. Fu, and J.K. Lee: J. Phys. III., 1991, vol. 1, pp. 1065–84.
F. Appel, M. Oehring, and J.D.H. Paul: Mater. Sci. Eng. A., 2008, vol. 493, pp. 232–6.
M.W. Rackel, A. Stark, H. Gabrisch, N. Schell, A. Schreyer, and F. Pyczak: Acta Mater., 2016, vol. 121, pp. 343–51.
S. Bolz, M. Oehring, J. Lindemann, F. Pyczak, J. Paul, A. Stark, T. Lippmann, S. Schrüfer, D. Roth-Fagaraseanu, A. Schreyer, and S. Weiß: Intermetallics., 2015, vol. 58, pp. 71–83.
N. Bibhanshu, G. Shankar, and S. Suwas: J. Mater. Res., 2020, https://doi.org/10.1557/s43578-020-00079-0.
R.V. Ramanujan: Int. Mater. Rev., 2000, vol. 45, pp. 217–40.
A. Couret, T. Voisin, M. Thomas, and J.P. Monchoux: JOM., 2017, vol. 69, pp. 2576–82.
M.N. Mathabathe, S. Govender, A.S. Bolokang, R.J. Mostert, and C.W. Siyasiya: J. Alloys Compd., 2018, vol. 757, pp. 8–15.
D. Hu: Intermetallics., 2001, vol. 9, pp. 1037–43.
Z.G. Jiang, B. Chen, K. Liu, and Y.Y. Li: Intermetallics., 2007, vol. 15, pp. 738–43.
B. Liu, Y. Liu, C. Qiu, C. Zhou, J. Li, H. Li, and Y. He: J. Alloys Compd., 2015, vol. 640, pp. 298–304.
O. Rios, S. Goyel, M.S. Kesler, D.M. Cupid, H.J. Seifert, and F. Ebrahimi: Scr. Mater., 2009, vol. 60, pp. 156–9.
C.-J. Zhan, T.-H. Yu, and C.-H. Koo: Mater. Trans., 2006, vol. 47, pp. 2588–94.
A. Gourgues, C. De Valduc, I. Tille, D. Ancizes, and L. Ancizes: 2016, pp. 209–14.
S. Roy, S. Suwas, S. Tamirisakandala, R. Srinivasan, and D.B. Miracle: TMS 2009 - 138th Annu. Meet. Exhib. Febr. 15, 2009 - Febr. 19, 2009, 2009, vol. 3, pp. 63–70.
D. Hu: Intermetallics., 2002, vol. 10, pp. 851–8.
H. Gabrisch, A. Stark, F.P. Schimansky, L. Wang, N. Schell, U. Lorenz, and F. Pyczak: Intermetallics., 2013, vol. 33, pp. 44–53.
M. Kastenhuber, B. Rashkova, H. Clemens, and S. Mayer: Intermetallics., 2015, vol. 63, pp. 19–26.
G. Dong Ren and J. Sun: Acta Mater., 2018, 144.
S.R. Dey, E. Bouzy, and A. Hazotte: Intermetallics., 2006, vol. 14, pp. 444–9.
S. Suwas and R.K. Ray: Bull. Mater. Sci., 1999, vol. 22, pp. 581–4.
R.K. Ray and S. Suwas: Met. Mater. Int., 2000, vol. 6, pp. 39–49.
N. Bibhanshu, A. Bhattacharjee, and S. Suwas: JOM, 2019, pp. 1–13.
H. Ding, G. Nie, R. Chen, J. Guo, and H. Fu: Mater. Des., 2012, vol. 41, pp. 108–13.
F. Kong, Y. Chen, and F. Yang: Intermetallics., 2011, vol. 19, pp. 212–6.
S.L. Semiatin, V. Seetharaman, and V.K. Jain: Metall. Mater. Trans. A., 1994, vol. 25A, pp. 2753–68.
E. Gamsjäger, Y. Liu, M. Rester, P. Puschnig, C. Draxl, H. Clemens, G. Dehm, and F.D. Fischer: Intermetallics., 2013, vol. 38, pp. 126–38.
S.L. Semiatin, V. Seetharaman, D.M. Dimiduk, and K.H.G. Ashbee: Metall. Mater. Trans. A., 1998, vol. 92A, pp. 7–18.
H.F. Chladil, H. Clemens, H. Leitner, A. Bartels, R. Gerling, F.P. Schimansky, and S. Kremmer: Intermetallics., 2006, vol. 14, pp. 1194–8.
D. Hu, C. Yang, A. Huang, M. Dixon, and U. Hecht: Intermetallics., 2012, vol. 23, pp. 49–56.
D. Hu: Rare Met., 2016, vol. 35, pp. 1–14. https://doi.org/10.1007/s12598-015-0615-1.
D. Hu and H. Jiang: Intermetallics., 2015, vol. 56, pp. 87–95.
N. Bibhanshu and S. Suwas: Mater. Sci. Forum., 2018, vol. 941, pp. 1391–6.
G. Nolze, V. Geist, R. Saliwan-Neumann, and M. Buchheim: Cryst. Res. Technol., 2005, vol. 40, pp. 791–804.
A.V. Kartavykh, M.V. Gorshenkov, V.V. Tcherdyntsev, and D.A. Podgorny: J. Alloys Compd., 2014, vol. 586, pp. 153–8.
M. Oehring, A. Stark, J.D.H. Paul, T. Lippmann, and F. Pyczak: Intermetallics., 2013, vol. 32, pp. 12–20.
H.F. Chladil, H. Clemens, G.A. Zickler, M. Takeyama, E. Kozeschnik, A. Bartels, T. Buslaps, R. Gerling, S. Kremmer, L. Yeoh, and K.D. Liss: Int. J. Mater. Res., 2007, vol. 98, pp. 1131–7.
O.P. Modi, N. Deshmukh, D.P. Mondal, A.K. Jha, A.H. Yegneswaran, and H.K. Khaira: Mater. Charact., 2001, vol. 46, pp. 347–52.
R. Shi, H.L. Fraser, and Y.N. Wang: Acta Mater., 2014, vol. 75, pp. 156–66.
S.R. Dey, A. Morawiec, E. Bouzy, A. Hazotte, and J.J. Fundenberger: Mater Lett., 2006, vol. 60, pp. 646–50.
F. Appel, J.D.H. Paul, M. Oehring: Gamma Titanium Aluminide Alloys, First, Wiley-VCH Verlag GmbH & Co. KGaA, Germany, 2011
M. Takeyama and S. Kobayashi: Intermetallics., 2005, vol. 13, pp. 993–9.
F. Appel, M. Oehring, and J. Paul: Mater. Res. Soc. Symp. Proc., 2007, vol. 980, pp. 383–8.
Acknowledgments
This work was carried out under the aegis of the GTMAP programme of the Aeronautics Research and Development Board (AR&DB), Government of India. The funding provided by AR&DB is gratefully acknowledged. The department of Advanced Facility of microscopy and microanalysis (AFMM) of IISc is also acknowledged by the authors for providing the characterizations facilities. The authors also acknowledge the help provided by Dr. S. Banumathy of DMRL Hyderabad.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Manuscript submitted February 26, 2021; accepted September 22, 2021.
Rights and permissions
About this article
Cite this article
Bibhanshu, N., Rajanna, R., Bhattacharjee, A. et al. Phase Transformations in Third Generation Gamma Titanium Aluminides: Ti-45Al-(5, 10) Nb-0.2B-0.2C. Metall Mater Trans A 52, 5300–5313 (2021). https://doi.org/10.1007/s11661-021-06469-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-021-06469-1