Skip to main content
Log in

Combined Effect of Sodium Lauryl Sulphate and Saccharin on Microstructure and Corrosion Performance of Electrodeposited Nickel Prepared from Modified Watts Bath

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Additives in Watts bath influence the surface properties of the electrodeposited nanocrystalline nickel. The changes in the properties are led by the alteration in the nucleation and plating over-potentials (\( E_{n} \) & \( E_{p} \)). A galvanodynamic polarization technique was used to determine the \( E_{n} \) & \( E_{p} \) in the modified Watts bath. From all the commercially available additives, sodium lauryl sulfate (SLS) was used as an anti-pitting agent, and saccharin (SAC) was added as a grain refiner. The concentration of SAC was varied in the range from 1.5 to 10 \( {\text{ml}}/{\text{l}} \) while keeping SLS concentration constant at 1.1 \( {\text{g}}/{\text{l}} \) in order to see its effect on polarization potentials, surface roughness, and corrosion behavior. Refinement of surface roughness and crystallite size, corresponding to steady values of \( E_{n} \) & \( E_{p} \) was obtained for SAC at 3 ml/l and SLS at 1.1 g/l. The deposits with fine crystallite size showed minimal passivation current density and highest polarization resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Z. Ahmad: Principles of Corrosion Engineering and Corrosion Control, 1st ed., Elsevier/ Butterworth-Heinemann, 2006, pp. 382–437.

  2. O. S. I. Fayomi, I. G. Akande, and A. A. Sode: J. Phys. Conf. Ser., 2019, vol. 1378, p. 022063.

    Article  CAS  Google Scholar 

  3. M. J. Cruz, I. V. Makarova, D. S. Kharitonov, I. Dobryden, A. A. Chernik, M. Grageda, and S. Ushak: Surf. Interface Anal., 2019, vol. 51(9), pp. 943–53.

    Article  CAS  Google Scholar 

  4. Y. Wang, Z. Gu, Y. Xin, N. Yuan, and J. Ding: Colloids Surfaces A Physicochem. Eng. Asp., 2018, vol. 538, pp. 500–5.

    Article  CAS  Google Scholar 

  5. Y. K. Wei, Y. J. Li, Y. Zhang, X. T. Luo, and C. J. Li: Corros. Sci., 2018, vol. 138, pp. 105–15.

    Article  CAS  Google Scholar 

  6. G. Zangari: Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry, 1st ed., Elsevier, Amsterdam, Netherlands, 2018, pp. 141–60.

    Book  Google Scholar 

  7. L. Guo and P. C. Searson: Electrochim. Acta, 2010, vol. 55(13), pp. 4086–91.

    Article  CAS  Google Scholar 

  8. M. S. Moats and A. Derrick: Electrometallurgy, 1st ed., Wiley, New York, 2012, pp. 125–37.

  9. X. Zhou, Y. Wang, Z. Liang, and H. Jin: Materials (Basel)., 2018, vol. 11(7), p. 1124.

  10. L. Yuan, Z. Y. Ding, S. J. Liu, W. F. Shu, and Y. N. He: Trans. Nonferrous Met. Soc. China (English Ed.), 2017, vol. 27(7), pp. 1656–64.

    Article  CAS  Google Scholar 

  11. P. A. Adcock, A. Quillinan, B. Clark, O. M. G. Newman, and S. B. Adeloju: J. Appl. Electrochem., 2004, vol. 34(8), pp. 771–80.

    Article  CAS  Google Scholar 

  12. L. Schoeman, E. N. Nsiengani, K. C. Sole, and R. Sandenbergh: Hydrometallurgy, 2020, vol. 194, p. 105332.

    Article  CAS  Google Scholar 

  13. L. Schoeman and K. C. Sole: Can. Metall. Q., 2017, vol. 56(4), pp. 393–400.

    Article  CAS  Google Scholar 

  14. D. E. Rusu, A. Ispas, A. Bund, C. Gheorghies, and G. Cârâ: J. Coat. Technol. Res., 2012, vol. 9(1), pp. 87–95.

  15. R. Mishra and R. Balasubramaniam: Corros. Sci., 2004, vol. 46(12), pp. 3019–29.

    Article  CAS  Google Scholar 

  16. E. P. S. Schmitz, S. P. Quinaia, J. R. Garcia, C. K. De Andrade, and M. C. Lopes: Int. J. Electrochem. Sci, 2016, vol. 11, pp. 983–97.

    CAS  Google Scholar 

  17. A. Ciszewski, S. Posluszny, G. Milczarek, and M. Baraniak: Surf. Coat. Technol., 2004, vol. 183(2–3), pp. 127–33.

  18. D. H. Nam, K. S. Hong, J. S. Kim, J. L. Lee, G. E. Kim, and H. S. Kwon: Surf. Coatings Technol., 2014, vol. 248, pp. 30–7.

    Article  CAS  Google Scholar 

  19. R. Elansezhian, B. Ramamoorthy, and P. K. Nair: J. Mater. Process. Technol., 2009, vol. 209(1), pp. 233–40.

    Article  CAS  Google Scholar 

  20. J. Sudagar, J. S. Lian, Q. Jiang, Z. H. Jiang, G. Y. Li, and R. Elansezhian: Progress in Organic Coatings, 2012, vol. 74(4), pp. 788–93.

    Article  CAS  Google Scholar 

  21. K. Sarkar, A. Mondal, A. Chakraborty, M. Sanbui, N. Rani, and M. Dutta: Surf. Coatings Technol., 2018, vol. 348, pp. 64–72.

    Article  CAS  Google Scholar 

  22. J. R. López, P. F. Méndez, J. J. P. Bueno, G. Trejo, R. Antaño, J. Torres-González, G. Stremsdoerfer, and Y. Meas: J. Electrochem. Soc., 2017, vol. 164(7), pp. D524–D31.

    Article  Google Scholar 

  23. R. Solmaz, E. Altunba, and G. Karda: Mater. Chem. Phys., 2011, vol. 125(3), pp. 796–801.

    Article  CAS  Google Scholar 

  24. A. Zarebidaki, H. Mahmoudikohani, and M. R. Aboutalebi: J. Alloys Compd., 2014, vol. 615, pp. 825–30.

    Article  CAS  Google Scholar 

  25. W. R. Tyson and W. A. Miller: Surf. Sci., 1977, vol. 62(1), pp. 267–76.

    Article  CAS  Google Scholar 

  26. S. M. Hassan Zadeh Shirazi, M. E. Bahrololoom, and M. H. Shariat: Surf. Eng. Appl. Electrochem., 2016, vol. 52(5), pp. 434–42.

  27. Y. Li, J. Yao, and X. Huang: Int. J. Metall. Mater. Eng., 2016, vol. 2(1), p. 123.

  28. U. S. Mohanty, B. C. Tripathy, P. Singh, A. Keshavarz, and S. Iglauer: Journal of Applied Electrochemistry, 2019, vol. 49(9), pp. 847–70.

    Article  CAS  Google Scholar 

  29. L. Yuan, J. Hu, Z. Ding, and S. Liu: Int. J. Electrochem. Sci, 2017, vol. 12, pp. 7312–25.

    Article  CAS  Google Scholar 

  30. L. H. Mendoza-Huizar and C. H. Rios-Reyes: Cent. Eur. J. Chem., 2013, vol. 11(8), pp. 1381–92.

    CAS  Google Scholar 

  31. H. Fischer and H. F. Heiling: Trans. IMF, 1954, vol. 31(1), pp. 90–105.

    Article  CAS  Google Scholar 

  32. P. A. Adcock, S. B. Adeloju, and O. M. G. Newman: J. Appl. Electrochem., 2002, vol. 32(10), pp. 1101–07.

    Article  CAS  Google Scholar 

  33. X. Huang, Y. Chen, J. Zhou, Z. Zhang, and J. Zhang: J. Electroanal. Chem., 2013, vol. 709, pp. 83–92.

    Article  CAS  Google Scholar 

  34. L.K. Wu, W.K. Wang, H.Z. Cao, G.Y. Hou, Y.P. Tang, and G.Q. Zheng: J. Electrochem. Soc., 2016, vol. 163(14), pp. D829–D35.

    Article  CAS  Google Scholar 

  35. R. G. Kelly, J. R. Scully, D. Shoesmith, and R. G. Buchheit: Electrochemical Techniques in Corrosion Science and Engineering, 1st ed., CRC Press, New York, NY, 2002, pp. 55-123.

    Book  Google Scholar 

  36. S. Esmailzadeh, M. Aliofkhazraei, and H. Sarlak: Prot. Met. Phys. Chem. Surfaces, 2018, vol. 54(5), pp. 976–89.

  37. K. D. Ralston, N. Birbilis, and C. H. J. Davies: Scr. Mater., 2010, vol. 63(12), pp. 1201–04.

    Article  CAS  Google Scholar 

  38. [38] S. Gollapudi: Corros. Sci., 2012, vol. 62, pp. 90–4.

    Article  CAS  Google Scholar 

  39. [39] S. Gollapudi, W. Cai, S. Patibanda, K. V. Rajulapati, and L. Neelakantan: Emergent Mater., 2020, vol. 3(6), pp. 989–97.

    Article  Google Scholar 

  40. B. I. Onyeachu, E. E. Oguzie, I. C. Ukaga, D. I. Njoku, and X. Peng: Port. Electrochim. Acta, 2017, vol. 35(3), pp. 127–36.

  41. [41] Y. Zhang, Z. Xiao, Y. Zhao, Z. Li, Y. Xing, and K. Zhou: Mater. Chem. Phys., 2017, vol. 199, pp. 54–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Indian Institute of Technology, Bhubaneswar, and Saint Gobain India Pvt Limited (Research & Development) and we acknowledge their support.

Funding

This research work was funded by Saint Gobain India Pvt Limited (Research & Development) and the Indian Institute of Technology, Bhubaneswar.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anand Prakash or Srikant Gollapudi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted September 21, 2020; February 12, 2021.

Appendix

Appendix

1.1 (A) Polarization Study to Determine the Kinetic Parameters of Electrodeposition

To determine the kinetic parameters such as transfer coefficient (α), Tafel slope (b), and exchange current density \( (i_{0} ) \); cathodic polarization tests for all the samples have been done. The scan rate for all the testing is kept constant at 2 mV/s. As the electrodeposition process is cathodic and cathodic overpotential is much greater than anodic overpotential, the Butler–Volmer equation takes the form as follows (Eq. [A.1]):

$$ \eta = a + b\log i $$
(A.1)
$$ b = - \frac{2.303RT}{\alpha nF} $$
(A.2)
$$ a = \frac{2.303RT}{\alpha nF}\log i_{0} $$
(A.3)

Where \( \eta \) is the overpotential in V, \( b \) = Tafel slope in V/decade, \( a \) = intercept, \( F \). is the Faraday’s constant = 96485 C/mol, \( R \) = universal gas constant and \( T \). is the temperature of deposition bath in Kelvins.

The \( a \) and \( b \) for the cathodic polarization curves are determined by using EC lab software. Consequently, the value of α and \( i_{0} \) are calculated using Eqs. [A.2] and [A.3].

1.2 (B) Model Based Evaluation of Nucleation Rate

Simple classical model (SCM) for nucleation was proposed by Volmer et al. and Becker et al. to quantify the kinetics of the nucleation process. The basic assumption is that the formed clusters have the same crystal structure and thermodynamic properties as the bulk material. Ain the electrodeposition process the critical nucleus is composed of few atoms, the assumption of same thermodynamic properties of the clusters and bulk material is not appropriate. To define the nucleation and growth process on a nanometric scale, atomistic models have been proposed. However, experimental validation of this theory is challenging due to the involvement of microscopic terms such as the number of nucleation sites and frequency of attachment/detachment of atoms to clusters. Hence, modified classical Gibbs models seem convenient to use to determine the nucleation rates. As per SCM, if the nucleation event is assumed to be the formation of spherical nuclei on the substrate, then we can use the following Gibbs free energy equation for the nucleation event.

$$ \Delta G = - V\Delta G_{v} \; + \;\Delta G_{s} $$
(B.1)

where \( V = \) Volume of the nucleus, \( \Delta G_{v} = \) Volume Gibbs free energy, \( \Delta G_{s} = \) Surface Gibbs free energy = \( A_{s} \gamma \), \( A_{s} \) \( = \)Surface area of nucleus, and \( \gamma = \) surface energy

The relationship between volume Gibbs free energy (\( \Delta G_{v} \)) and the overpotential (\( \eta \)) is given by the Nernst’s equation as follows:

$$ \Delta G_{v} = - \frac{nF\rho \eta }{M} $$
(B.2)

As we are talking about nucleation events, the use of nucleation overpotential is more appropriate. It is the difference between the equilibrium potential and the actual threshold potential for initiation of nucleation.

So, substituting all the values in Eq. [B.1]

$$ \Delta G = \frac{4}{3}\pi r^{3} \left( {\frac{nF\rho \eta }{M}} \right) + 4\pi r^{2} \gamma $$
(B.3)

By differentiating \( \Delta G \) w.r.t \( r \) and equating it to zero, the expression for the critical radius (\( r^{*} \)) of a nucleus and free energy for the formation of a critical cluster can be determined as follows:

$$ r^{*} = \frac{ - 2M\gamma }{nF\rho \eta } \;{\text{and}}\;\Delta G^{*} = \frac{{16\pi \gamma^{3} M^{2} }}{{3\left( {\rho nF\eta } \right)^{2} }} $$
(B.4)

However, the nucleation event is similar to the formation of hemispherical caps (contact angle, \( \theta \)= 90 deg) on pre-existing surfaces (Heterogeneous nucleation). Hence, an additional term i.e \( f\left( \theta \right) = \frac{{2 - 3cos\theta + \cos^{3} \theta }}{4} \) is multiplied with the \( \Delta G^{*} \) term and \( r^{*} \) remain independent of \( \theta \). For \( \theta = 90^\circ \), \( f\left( \theta \right) = 0.5 \).

Now, the nucleation rate can be expressed as

$$ R = R_{0} \exp \left( {\frac{{ - \Delta G^{*} }}{RT}} \right) $$
(B.5)

where

$$ R_{0} = A_{s}^{*} Z\left( {\frac{{i_{0} }}{nF}} \right)\exp \left( {\frac{ - \alpha nF\eta }{RT}} \right) $$
(B.6)
$$ A_{s}^{*} = Surface\,area\,of\,critical\,nucleus\,=\,4\pi r^{*2} $$
$$ Z = Zel^{\prime}dovich\,factor = \frac{\eta Fn}{{\left( {12\pi K_{B} T*\frac{{16\pi \gamma^{3} M^{2} f\left( \theta \right)}}{{3\rho^{2} n^{2} F^{2} \eta^{2} }}} \right)^{0.5} }} = \frac{{1.732\rho n^{2} F^{2} \eta^{2} }}{{\left( {96\pi^{2} K_{B} T\gamma^{3} M^{2} } \right)^{0.5} }} $$
(B.7)

\( i_{0} = \) exchange current density.

Although in some places \( R_{0} and Z \) are considered as constant quantities, but there is a dependence of overpotential with both the quantities. The expression for both \( R_{0} and Z \) is derived by considering 3-dimensional nucleation.

Putting the \( \Delta G^{*} \& R_{0} \) values,

$$ R = A_{s}^{*} Z\left( {\frac{{i_{0} }}{nF}} \right)\exp \left[ { - \left( {\frac{\alpha nF\eta }{RT} + \frac{{16\pi \gamma^{3} M^{2} f\left( \theta \right)}}{{3RT\rho^{2} n^{2} F^{2} \eta^{2} }}} \right)} \right] = R^{\prime}_{0} \exp \left( c \right) $$
(B.8)

Hence, Eq. [B.8] evaluates the overpotential dependence of nucleation rate in the case of 3-dimensional nucleation.

See Table XI and Figure 13.

Table XI Nucleation (\( {\text{E}}_{\text{n}} \)) and Plating Potential (\( {\text{E}}_{\text{p}} \)) Values for Various Electrolytes Ordered as S1 to S5
Fig. 13
figure 13

Potentiodynamic polarization curves for samples S1 to S5 after (a) 24 h and (b) 168 h of exposure in 3.5 wt pct NaCl. The exposed area in the case of cyclic potentiodynamic polarization, potentiodynamic polarization, and EIS is 3.141 cm2 (as the internal diameter of the mounted glass tube is 2 cm). The exposed area in the case of galvanodynamic scan to determine \( E_{n} \) and \( E_{p} \) is 10 cm2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Samantaray, B., Dolai, S. et al. Combined Effect of Sodium Lauryl Sulphate and Saccharin on Microstructure and Corrosion Performance of Electrodeposited Nickel Prepared from Modified Watts Bath. Metall Mater Trans A 52, 1913–1926 (2021). https://doi.org/10.1007/s11661-021-06202-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-021-06202-y

Navigation