Skip to main content
Log in

The Mechanism of Grain Boundary Serration and Fan-Type Structure Formation in Ni-Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A model of discontinuous precipitation of γ′ phase at grain boundaries (GBs) in polycrystalline Ni-based superalloys during continuous cooling from supersolvus temperature was developed. The model calculates the size and γ′ phase fraction in GB precipitates as a function of cooling rate and GB mobility. The model is based on the classical mechanism of diffusion-controlled precipitation. It considers fast diffusion of γ′-forming elements along the GB and the motion of the GBs under driving force induced by alloy decomposition. The model predicts either discrete GB gamma-prime particles and GB serration or the growth of fan-type structures depending on the cooling rate and GB mobility. We conclude from the model predictions that the GB mobility is the key factor controlling the type and morphology of GB precipitates. High GB mobility results in formation of fan-type structures, while the lower GB mobility leads to GB serration. The predicted dependence of the size of GB precipitates on the cooling rate is in good agreement with the experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Superalloys II, Edited by Sims C.T., Stoloff N.S. and Hagel W.C., John Willey and Sons, New York, 1986.

  2. 2 H. Mughrabi and U. Tetzlaff: Advanced Engineering Materials, 2000, vol. 2, pp. 319–326.

    Article  CAS  Google Scholar 

  3. 3 H. Mughrabi: Materials Science and Technology, 2009, vol. 25, pp. 191–204.

    Article  CAS  Google Scholar 

  4. 4 R.J. Mitchell, H.Y. Li, and Z.W. Huang: Journal of materials processing technology, 2009, vol. 209, pp. 1011–1017.

    Article  CAS  Google Scholar 

  5. 5 M.F. Henry, Y.S. Yoo, D.Y. Yoon, and J. Choi: Metallurgical and Materials Transactions A, 1993, vol. 24, pp. 1733–1743.

    Article  CAS  Google Scholar 

  6. 6 C.K.L. Davies, P.G. Nash, R.N. Stevens, and L.C. Yap: Journal of materials science, 1985, vol. 20, pp. 2945–2957.

    Article  CAS  Google Scholar 

  7. 7 J.D. Nystrom, T.M. Pollock, W.H. Murphy, and A. Garg: Metallurgical and Materials Transactions A, 1997, vol. 28, pp. 2443–2452.

    Article  CAS  Google Scholar 

  8. D. Furrer and H. Fecht: TMS Superalloys, 2000, pp. 415–24.

  9. 9 D.B. Williams and J.W. Edington: Acta Metallurgica, 1976, vol. 24, pp. 323–332.

    Article  Google Scholar 

  10. 10 J. Wang, H. Zou, C. Li, S. Qiu, and B. Shen: Materials Characterization, 2008, vol. 59, pp. 587–591.

    Article  CAS  Google Scholar 

  11. 11 D.B. Williams and E.P. Butler: International Metals Reviews, 1981, vol. 26, pp. 153–83.

    Article  CAS  Google Scholar 

  12. D.U. Furrer: Universität Ulm, 1999.

  13. 13 L.H. Schwartz, S. Mahajan, and J.T. Plewes: Acta Metallurgica, 1974, vol. 22, pp. 601–609.

    Article  CAS  Google Scholar 

  14. 14 J.C. Zhao and M.R. Notis: Acta materialia, 1998, vol. 46, pp. 4203–4218.

    Article  CAS  Google Scholar 

  15. 15 I.G. Solorzano and G.R. Purdy: Metallurgical and Materials Transactions A, 1984, vol. 15, pp. 1055–1063.

    Article  CAS  Google Scholar 

  16. H.L. Danflou, M. Macia, T.H. Sanders, and T. Khan: et al., TMS Superalloys, 1996, pp. 119–27.

  17. D. Turnbull: Acta Metall., 1955, vol. 3, pp. 55–63.

  18. 18 J.W. Cahn: Acta Metallurgica, 1959, vol. 7, pp. 18–28.

    Article  CAS  Google Scholar 

  19. 19 M. Hillert: Acta Metallurgica, 1982, vol. 30, pp. 1689–1696.

    Article  CAS  Google Scholar 

  20. Christian J. W.: The Theory of Transformations in Metals and Alloys. Part I Equilibrium and General Kinetic Theory, Pergamon Press.

  21. C. Herzig and Y. Mishin: in Diffusion in Condensed Matter, P. Heitjans and J. Kärger, eds., Springer, Berlin, 2005, pp. 337–66.

  22. 22 A.H. King: Scripta Materialia, 2010, vol. 62, pp. 889–893.

    Article  CAS  Google Scholar 

  23. 23 McLean D.: Grain Boundaries in Metals, At the Crarendon Press, Oxford, 1957.

    Google Scholar 

  24. R. Reed: The Superalloys: Fundamentals and Applications, Cambridge, Cambridge University Press, 2006.

    Book  Google Scholar 

  25. 25 A.R. Wazzan: Journal of Applied Physics, 1965, vol. 36, pp. 3596–3599.

    Article  CAS  Google Scholar 

  26. 26 J. Burke and D. Turnbull: Progress in Metal Physics, 1952, vol. 3, pp. 220–292.

    Article  CAS  Google Scholar 

  27. Z. Mao, C. Booth-Morrison, E. Plotnikov, and D.N. Seidman: J. Mater. Sci., 2012, pp. 1–7.

  28. 28 Y. Mishin: Acta materialia, 2004, vol. 52, pp. 1451–1467.

    Article  CAS  Google Scholar 

  29. Burlastky S.F. and Ivanov O.F.: JETP, vol. 70, p. 725.

  30. 30 S.-L. Chen, F. Zhang, F.-Y. Xie, S. Daniel, X.-Y. Yan, Y.A. Chang, R. Schmid-Fetzer, and W.A. Oates: Jom, 2003, vol. 55, pp. 48–51.

    Article  CAS  Google Scholar 

  31. W. Gust, M. Hintz, and B. Predel: Journal de Physique Colloques.

  32. 32 D.L. Olmsted, E.A. Holm, and S.M. Foiles: Acta Materialia, 2009, vol. 57, pp. 3704–13.

    Article  CAS  Google Scholar 

  33. 33 D.M. Collins, B.D. Conduit, H.J. Stone, M.C. Hardy, G.J. Conduit, and R.J. Mitchell: Acta Materialia, 2013, vol. 61, pp. 3378–91.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Burlatsky.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 3, 2019.

Appendix A

Appendix A

Let us assume the grain boundary to be an infinite flat layer of thickness δGB and the grain boundary precipitate to be a cylindrical particle of radius R and of height δGB located inside the layer (Figure A1). Grain boundary thickness is usually supposed to be equal to several lattice parameters.

Fig. A1
figure 8

Grain boundary with a localized absorbing particle of radius R

The γ′-forming elements diffuse along the grain boundary and through the grain bulk with diffusivities DGB and DG, correspondingly. The initial concentration of γ′-forming elements (initial condition) as well as concentration at infinity (boundary condition) is c0 (nominal concentration). The concentration of γ′-forming elements at the boundary of the particle is . The solution of diffusion equation in that geometry with the described above initial and boundary conditions is presented in detail.[29] The final equation for the Laplace transform of γ′ forming element flux to the particle is:

$$ J_{\gamma '} \left( s \right) = \frac{{2\pi \delta D_{\text{GB}} }}{s}\frac{{1 + F_{1} \left( s \right)}}{{F_{2} \left( s \right)}}, $$
(A1)

where

$$ F_{1} \left( s \right) = \int\limits_{0}^{\infty } {\frac{{x^{2} J_{0} \left( x \right)J_{1} \left( x \right){\text{d}}x}}{{x^{2} + \beta_{\text{GB}}^{2} + z\sqrt {x^{2} + \beta_{\text{G}}^{2} } }}} , $$
(A2)
$$ F_{2} \left( s \right) = \int\limits_{0}^{\infty } {\frac{{xJ_{0}^{2} \left( x \right){\text{d}}x}}{{x^{2} + \beta_{\text{GB}}^{2} + z\sqrt {x^{2} + \beta_{\text{G}}^{2} } }}} . $$
(A3)

Here \( z = \frac{{D_{\text{G}} R}}{{D_{\text{GB}} \delta }} \), \( \beta_{\text{GB}}^{2} = \frac{{R^{2} }}{{D_{\text{GB}} }}s \) and \( \beta_{\text{G}}^{2} = \frac{{R^{2} }}{{D_{\text{G}} }}s \). In the long-time asymptotic (small s), when \( t \gg \frac{{R^{2} }}{{D_{\text{G}} }}\sim 10^{ - 2} s \), the integrals (A2) and (A3) can be simplified as:

$$ F_{1} \approx \int\limits_{0}^{\infty } {\frac{{xJ_{0} \left( x \right)J_{1} \left( x \right){\text{d}}x}}{x + z}} , $$
(A4)
$$ F_{2} \approx \int\limits_{0}^{\infty } {\frac{{J_{0}^{2} \left( x \right){\text{d}}x}}{x + z}.} $$
(A5)

Taking advantage of \( z < 1 \), we obtain that \( F_{1} \approx {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-0pt} 2} \) and \( F_{2} \approx \ln \left( {z^{ - 1} } \right) \). Substituting these equations for F1 and F2 into Eq. (A1), we obtain the final equation:

$$ J_{\gamma '} \left( s \right) = \frac{{3\pi \delta D_{\text{GB}} }}{s}\frac{1}{{\ln \left( {z^{ - 1} } \right)}}. $$
(A6)

After the inverse Laplace transform, we obtain the flux to the particle in the t-domain:

$$ J_{{\gamma^{\prime}}} = \frac{{3\pi D_{\text{GB}} \delta_{\text{GB}} (c_{0} - c_{\gamma } )}}{{\ln \left( {\frac{{D_{\text{GB}} \delta_{\text{GB}} }}{{D_{\text{G}} R}}} \right)}}. $$
(A7)

The long-time asymptotic, \( t \gg 0.01 s \), is independent of time, which is the feature of the 3D diffusion-controlled reaction rate, although the γ′-forming elements are transported to the absorbing particle by 2D diffusion through the grain boundary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atrazhev, V.V., Burlatsky, S.F., Dmitriev, D.V. et al. The Mechanism of Grain Boundary Serration and Fan-Type Structure Formation in Ni-Based Superalloys. Metall Mater Trans A 51, 3648–3657 (2020). https://doi.org/10.1007/s11661-020-05790-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05790-5

Navigation