Skip to main content
Log in

Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The size of cavitation region is a key parameter to estimate the metallurgical effect of ultrasonic melt treatment (UST) on preferential structure refinement. We present a simple numerical model to predict the characteristic length of the cavitation region, termed cavitation depth, in a metal melt. The model is based on wave propagation with acoustic attenuation caused by cavitation bubbles which are dependent on bubble characteristics and ultrasonic intensity. In situ synchrotron X-ray imaging of cavitation bubbles has been made to quantitatively measure the size of cavitation region and volume fraction and size distribution of cavitation bubbles in an Al-Cu melt. The results show that cavitation bubbles maintain a log-normal size distribution, and the volume fraction of cavitation bubbles obeys a tanh function with the applied ultrasonic intensity. Using the experimental values of bubble characteristics as input, the predicted cavitation depth agrees well with observations except for a slight deviation at higher acoustic intensities. Further analysis shows that the increase of bubble volume and bubble size both leads to higher attenuation by cavitation bubbles, and hence, smaller cavitation depth. The current model offers a guideline to implement UST, especially for structural refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

A :

Vibration amplitude of the sonotrode

S :

Area of cavitation region

C 0, C 1st, C 2nd :

Fitting constants

Re :

Identifier of real number

Im :

Identifier of imaginary number

Φ :

Complex dimensionless parameter

ρ :

Liquid density, 3340 kg/m3

k mix :

Complex wave vector

α :

attenuation coefficient

α th :

Local attenuation corresponding to local intensity Ith

ω :

Wave frequency (ω = 2πf)

ω 0 :

Resonance frequency (Hz)

c :

Sound speed in liquid at ambient pressure (m/s)

c 0 :

Constant sound speed (m/s), 4600 m/s

c mix :

Complex wave velocity

R :

Equilibrium radius of bubbles (m)

f :

Ultrasound frequency (Hz), 20 kHz

f(r, R):

Number distribution of cavitation bubbles with equilibrium radius R at distance r

f N(r):

Normalized form of f(r, R)

N b :

Total number of cavitation bubbles

β(r):

Volume fraction of cavitation bubbles at distance r

I :

Acoustic intensity

I 0 :

Applied acoustic intensity at the radiation face of ultrasonic horn

I th :

Intensity threshold of cavitation, 1.2 MW/m2

p un :

Undisturbed pressure at bubble location (Pa), 105 Pa

p a :

Pressure amplitude (Pa)

p 0 :

Pressure input (Pa)

σ s :

Surface tension, 0.87 N/m

Φ :

Complex dimensionless parameter

χ:

Dimensionless parameter

γ :

Specific heat ratio of gas inside bubbles, 1.4 for air bubble in water[39]

D :

Thermal diffusivity of gas inside bubbles, 8.418 × 10−5 m2/s

b :

Damping factor (1/s)

μ :

Liquid viscosity (Pa s), 1 MPa s for aluminum melt at 700 °C[8]

References

  1. F. Wang, D. Eskin, J. Mi, T. Connolley, J. Lindsay and M. Mounib: Acta Mater., 2016, vol. 116, pp. 354-363.

    Article  CAS  Google Scholar 

  2. G. I. Eskin: Ultrason. Sonochem., 2001, vol. 8(3), pp. 319-325.

    Article  CAS  Google Scholar 

  3. L. Zhang, D. G. Eskin and L. Katgerman: J. Mater. Sci., 2011, vol. 46(15), pp. 5252-5259.

    Article  CAS  Google Scholar 

  4. W. Zhai, Z. Y. Hong, X. L. Wen, D. L. Geng and B. Wei: Mater. Design, 2015, vol. 72, pp. 43-50.

    Article  CAS  Google Scholar 

  5. C. Ruirun, Z. Deshuang, M. Tengfei, D. Hongsheng, S. Yanqing, G. Jingjie and F. Hengzhi: Sci. Rep., 2017, vol. 7, pp. 1-15.

    Article  Google Scholar 

  6. X. Liu, Z. Zhang, W. Hu, Q. Le, L. Bao, J. Cui and J. Jiang: Ultrason. Sonochem., 2015, vol. 26, pp. 73-80.

    Article  CAS  Google Scholar 

  7. J. Yan, Z. Xu, L. Shi, X. Ma and S. Yang: Mater. Design, 2011, vol. 32(1), pp. 343-347.

    Article  CAS  Google Scholar 

  8. G. I. Eskin and D. G. Eskin: Ultrasonic Treatment of Light Alloy Melts. 2nd ed. CRC Press, London, 2014, pp. 17-74.

    Google Scholar 

  9. T. V. Atamanenko, D. G. Eskin, L. Zhang and L. Katgerman: Metall. Mater. Trans. A, 2010, vol. 41(8), pp. 2056-2066.

    Article  CAS  Google Scholar 

  10. F. Wang, D. Eskin, J. Mi, C. Wang, B. Koe, A. King, C. Reinhard and T. Connolley: Acta Mater., 2017, vol. 141, pp. 142-153.

    Article  CAS  Google Scholar 

  11. A. Ramirez, M. Qian, B. Davis, T. Wilks and D. H. StJohn: Scripta Mater., 2008, vol. 59(1), pp. 19-22.

    Article  CAS  Google Scholar 

  12. R. Chow, R. Blindt, R. Chivers and M. Povey: Ultrasonics, 2005, vol. 43(4), pp. 227-230.

    Article  CAS  Google Scholar 

  13. D. Shu, B. Sun, J. Mi and P. S. Grant: Metall. Mater. Trans. A, 2012, vol. 43(10), pp. 3755-3766.

    Article  CAS  Google Scholar 

  14. S. Labouret and J. Frohly: Eur. Phys. 2002, vol. 19(1), pp. 39-54.

    Google Scholar 

  15. A. Brotchie, F. Grieser and M. Ashokkumar: Phys. Rev. Lett., 2009, vol. 102(8), pp. 4302-4305.

    Article  Google Scholar 

  16. F. Burdin, N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm and H. Delmas: Ultrason. Sonochem., 1999, vol. 6(1-2), pp. 43-51.

    Article  CAS  Google Scholar 

  17. N. A. Tsochatzidis, P. Guiraud, A. M. Wilhelm and H. Delmas: Chem. Eng. Sci., 2001, vol. 56(5), pp. 1831-1840.

    Article  CAS  Google Scholar 

  18. T. Matsunaga, K. Ogata, T. Hatayama, K. Shinozaki and M. Yoshida: Compos. Part A, 2007, vol. 38(3), pp. 771-778.

    Article  Google Scholar 

  19. S. Komarov, K. Oda, Y. Ishiwata and N. Dezhkunov: Ultrason. Sonochem., 2013, vol. 20(2), pp. 754-761.

    Article  CAS  Google Scholar 

  20. I. Tzanakis, G. S. B. Lebon, D. G. Eskin and K. A. Pericleous: J. Mater. Process. Technol., 2016, vol. 229, pp. 582-586.

    Article  CAS  Google Scholar 

  21. I. Tzanakis, G. S. Lebon, D. G. Eskin and K. A. Pericleous: Ultrason. Sonochem., 2017, vol. 34, pp. 651-662.

    Article  CAS  Google Scholar 

  22. T. L. Lee, J. C. Khong, K. Fezzaa and J. W. Mi: Mater. Sci. Forum, 2013, vol. 765, pp. 190-194.

    Article  Google Scholar 

  23. H. Huang, D. Shu, Y. Fu, J. Wang and B. Sun: Ultrason. Sonochem., 2014, vol. 21(4), pp. 1275-1278.

    Article  CAS  Google Scholar 

  24. W. W. Xu, I. Tzanakis, P. Srirangam, W. U. Mirihanage, D. G. Eskin, A. J. Bodey and P. D. Lee: Ultrason. Sonochem., 2016, vol. 31, pp. 355-361.

    Article  Google Scholar 

  25. L. V. Wijngaarden: J. Fluid Mech., 1968, vol. 33(33), pp. 465-474.

    Article  Google Scholar 

  26. R. E. Caflisch, M. J. Miksis, G. C. Papanicolaou and L. Ting: J. Fluid Mech., 1985, vol. 153, pp. 259-273.

    Article  Google Scholar 

  27. K. W. Commander and A. Prosperetti: J. Acoust. Soc. Am., 1989, vol. 85(2), pp. 732-746.

    Article  Google Scholar 

  28. H. J. Kim, M. H. Chi and I. K. Hong: Journal of Industrial & Engineering Chemistry, 2009, vol. 15(6), pp. 919-928.

    Article  Google Scholar 

  29. L. Nastac: Metall. Mater. Trans. B, 2011, vol. 42(6), pp. 1297-1305.

    Article  Google Scholar 

  30. G. Servant, J. L. Laborde, A. Hita, J. P. Caltagirone and A. Gérard: Ultrason. Sonochem., 2003, vol. 10(6), pp. 347-355.

    Article  CAS  Google Scholar 

  31. I. Tudela, V. Saez, M. D. Esclapez, M. I. Diez-Garcia, P. Bonete and J. Gonzalez-Garcia: Ultrason. Sonochem., 2014, vol. 21(3), pp. 909-919.

    Article  CAS  Google Scholar 

  32. G. S. B. Lebon, I. Tzanakis, K. Pericleous and D. Eskin: Ultrason. Sonochem., 2018, vol. 42, pp. 411-421.

    Article  CAS  Google Scholar 

  33. L. G. S. Bruno, I. Tzanakis, G. Djambazov, K. Pericleous and D. G. Eskin: Ultrason. Sonochem., 2017, vol. 37, pp. 660-668.

    Article  Google Scholar 

  34. H. Huang, D. Shu, J. Zeng, F. Bian, Y. Fu, J. Wang and B. Sun: Scripta Mater., 2015, vol. 106, pp. 21-25.

    Article  CAS  Google Scholar 

  35. M. Qian, A. Ramirez and A. Das: J. Cryst. Growth, 2009, vol. 311(14), pp. 3708-3715.

    Article  CAS  Google Scholar 

  36. R. Jamshidi, B. Pohl, U. A. Peuker and G. Brenner: Chem. Eng. J., 2012, vol. 189, pp. 364-75.

    Article  Google Scholar 

  37. Z. Xu, K. Yasuda and S. Koda: Ultrason. Sonochem., 2013, vol. 20(1), pp. 452-459.

    Article  CAS  Google Scholar 

  38. M. M. van Iersel, N. E. Benes and J. T. F. Keurentjes: Ultrason. Sonochem., 2008, vol. 15(4), pp. 294-300.

    Article  Google Scholar 

  39. C. D. Jr: J. Acoust. Soc. Am., 1959, vol. 31(12), pp. 1654-1667.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the financial support from the National Key R&D Program of China (No. 2016YFB0701405), the National Science Foundation of China (Nos. 51627802, 51704196, 51771118, and 51704195), the National Science Foundation of China and Steel Joint Project (No. U1760110), and Shanghai Science and Technology Committee (No. 16DZ2260602).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Da Shu or Anping Dong.

Additional information

Manuscript submitted December 8, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Shu, D., Fu, Y. et al. Prediction of Cavitation Depth in an Al-Cu Alloy Melt with Bubble Characteristics Based on Synchrotron X-ray Radiography. Metall Mater Trans A 49, 2193–2201 (2018). https://doi.org/10.1007/s11661-018-4603-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4603-6

Navigation