Skip to main content

Advertisement

Log in

A Double-Nanophase Intragranular-Oxide-Strengthened Iron Alloy with High Strength and Remarkable Ductility

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Herein, we introduce a versatile facile strategy for producing double-nanophase intragranular-oxide-strengthened iron alloy. The manufacturing route includes liquid–liquid mixing and rapid combustion at a molecular level that results in a nanocrystalline microstructure with nanosized oxide particles homogeneously distributed in the grain interior. The particular double-nanophase microstructure with an average grain size of 178.5 nm and oxide particle size of 19.3 nm achieves a high ultimate compressive strength of 1.52 GPa and large strain-to-failure of 54 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1. K. Lu: Science, 2010, vol. 328, pp. 319-20.

    Article  Google Scholar 

  2. 2. R. W. Grimes and W. J. Nuttall: Science, 2010, vol. 329, pp. 799-803.

    Article  Google Scholar 

  3. 3. A. Hirata, T. Fujita, Y. R. Wen, J. H. Schneibel, C. T. Liu, and M. W. Chen: Nat. Mater., 2011, vol. 10, pp. 922-26.

    Article  Google Scholar 

  4. 4. T. Gräning, M. Rieth, J. Hoffmann, and A. Möslang: J Nucl. Mater., 2017, vol. 487 pp. 348-61.

    Article  Google Scholar 

  5. 5. X. Boulnat, N. Sallez, M. Dadé, A. Borbély, J. Béchade, Y. De Carlan, J. Malaplate, Y. Bréchet, F. De Geuser, and A. Deschamps: Acta Mater., 2015, vol. 97, pp. 124-30.

    Article  Google Scholar 

  6. 6. M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, and A. Deschamps: Acta Mater., 2017, vol.127, pp. 165-77.

    Article  Google Scholar 

  7. 7. M. A. Thual, J. Ribis, T. Baudin, V. Klosek, Y. de Carlan, and M. H. Mathon: Scripta Mater., 2017, vol. 136, pp. 37-40.

    Article  Google Scholar 

  8. 8. R. Vijay, M. Nagini, J. Joardar, M. Ramakrishna, A. V. Reddy, and G. Sundararajan: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1611-20.

    Article  Google Scholar 

  9. 9. R. Vijay, M. Nagini, S. S. Sarma, M. Ramakrishna, A. V. Reddy, and G. Sundararajan: Metall. Mater. Trans. A, 2014, vol. 45, pp. 777-84.

    Article  Google Scholar 

  10. 10. D. G. Morris and M. A. Muñoz-Morris: Acta Mater., 2013, vol. 61, pp. 4636-47.

    Article  Google Scholar 

  11. 11. G. Liu, G. J. Zhang, F. Jiang, X. D. Ding, Y. J. Sun, J. Sun, and E. Ma: Nat. Mater., 2013, vol. 12, pp. 344-50.

    Article  Google Scholar 

  12. 12. A. Varma, A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan: Chem. Rev., 2016, vol. 116, pp. 14493-586.

    Article  Google Scholar 

  13. 13. M. Kim, M. G. Kanatzidis, A. Facchetti, and T. J. Marks: Nat. Mater., 2011, vol. 10, pp. 382-8.

    Article  Google Scholar 

  14. 14. J. Deng, L. Kang, G. Bai, Y. Li, P. Li, X. Liu, Y. Yang, F. Gao, and W. Liang: Electrochim. Acta, 2014, vol. 132, pp.127-135.

    Article  Google Scholar 

  15. 15. M. G. Chourashiya and A. Urakawa: J Mater. Chem. A, 2017, vol. 5, pp. 4774-78.

    Article  Google Scholar 

  16. 16. G. V. Trusov, A. B. Tarasov, E. A. Goodilin, A. S. Rogachev, S. I. Roslyakov, S. Rouvimov, K. B. Podbolotov, and A. S. Mukasyan: J. Phys. Chem. C, 2016, vol. 120, pp. 7165-71.

    Article  Google Scholar 

  17. 17. A. Liu, H. Zhu, Z. Guo, Y. Meng, G. Liu, E. Fortunato, R. Martins, and F. Shan: Adv. Mater., 2017, vol. 29, 1701599.

    Article  Google Scholar 

  18. 18. F. Li, J. Ran, M. Jaroniec, and S. Z. Qiao: Nanoscale, 2015, vol. 7, 17590.

    Article  Google Scholar 

  19. 19. J. Chao, C. Capdevila, M. Serrano, A. Garcia-Junceda, J. A. Jimenez, G. Pimentel, and E. Urones-Garrote: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4581-94.

    Article  Google Scholar 

  20. 20. D. G. Morris and M. A. Muñoz-Morris: Acta Mater., 2013, vol. 61, pp. 4636-47.

    Article  Google Scholar 

  21. 21. B. Srinivasarao, K. Oh-Ishi, T. Ohkubo, and K. Hono: Acta Mater., 2009, vol. 57, pp. 3277-86.

    Article  Google Scholar 

  22. 22. L. Huang, L. Jiang, T. D. Topping, C. Dai, X. Wang, R. Carpenter, C. Haines, and J. M. Schoenung: Acta Mater., 2017, vol. 122, pp. 19-31.

    Article  Google Scholar 

Download references

This work was financially supported by the National Natural Science Foundation Program of China (51574029, 51574030, 51574031, 51604240, and 51604025), the Natural Science Foundation Program of Beijing (2174079 and 2162027), the China Postdoctoral Science Foundation (2016M591073), and the Fundamental Research Funds for the Central Universities (FRF-TP-17-034A2 and FRF-TP-17-029A1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingli Qin.

Additional information

Manuscript submitted September 21, 2018.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3369 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, M., Zhang, D., Chen, G. et al. A Double-Nanophase Intragranular-Oxide-Strengthened Iron Alloy with High Strength and Remarkable Ductility. Metall Mater Trans A 50, 1103–1108 (2019). https://doi.org/10.1007/s11661-018-05099-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-05099-4

Navigation