Skip to main content
Log in

Control of Microstructures and the Practical Properties of API X80 Grade Heavy-Wall High-Frequency Electric Resistance-Welded Pipe with Excellent Low-Temperature Toughness

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper describes development of heavy-walled API X80 grade high-frequency electric resistance-welded (HFW) line pipes and conductor-casing pipes with wall thicknesses up to 20.6 mm. A fine bainitic–ferrite microstructure, which is preferable for low-temperature toughness, was obtained by optimizing the carbon content and applying the thermomechanical controlled hot-rolling process. As a result, the Charpy ductile–brittle transition temperature (DBTT) was well below 227 K (−46 °C) in the base metal of the HFW line pipe. When the controlled hot-rolling ratio (CR) was increased from 23 to 48 pct, the area average grain size decreased from 15 to 8 μm. The dependence of CTOD properties on CR was caused by the largest grain which is represented by the area average grain size. No texture development due to the increase of CR from 23 to 48 pct was observed. In addition, because controlled in-line heat treatment of the longitudinal weld seam also produced the fine bainitic–ferrite microstructure at the weld seam, DBTT was lower than 227 K (−46 °C) at the weld portion. The developed pipes showed good girth weldability without preheat treatment, and fracture in the tensile test initiated from the base metal in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. P. Cizek, B. Wynne, P. Hodgson, and B. Muddle: Proceedings of the International Conference on Super-High Strength Steels, 2005, Milano, Italy.

  2. H. Hillenbrand, M. Gräf, and C. Kalwa: Proceedings of Niobium 2001, Dec. 2–5, 2001, Orland, Florida.

  3. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials: London, 1997, pp. 47–54.

    Google Scholar 

  4. H. Nakasugi, H. Matsuda, and H. Tamehiro: Alloys for the Eighties, Climax Molybdenum Company Conference, Ann Arbor, Michigan, 1980, pp. 213–224.

  5. I. A. Yakubtsov, P. Poruks, and J. D. Boyd: Mater. Sci. Eng. A, 2008, A480, pp. 109–116.

    Article  Google Scholar 

  6. V. Schwinn, P. Fluess, and J. Bauer: Proceedings of International Conference on the Application and Evaluation of High-Grade Linepipes in Hostile Environments, Yokohama, Japan, November 7–8, 2002.

  7. J. Bauer, V. Schwinn, and K. Tacke: Proceedings of 4th International Pipeline Conference, Calgary, Canada, Sept. 29–Oct. 3, 2002, IPC2002-27316.

  8. F. Kawabata, K. Amano, O. Tanigawa, T. Hatomura, and Y. Sujita: Proceedings of 11th International Conference on Offshore Mechanics and Arctic Engineering, Calgary, Canada, June 7–12, 1992, pp. 597–603.

  9. T. Okabe, S. Toyoda, S. Goto, Y. Kato, K. Yasuda, and K. Nakata: Key Eng. Mater., 2014, vol. 622–623, pp. 525-531.

    Article  Google Scholar 

  10. T. Okabe, K. Yasuda, and K. Nakata: Welding Int., 2016, vol. 30, pp. 835–845.

    Article  Google Scholar 

  11. Y. Matsui, Y. Iizuka, M. Suzuki, E. Urahata, T. Inoue, S. Kumazawa, M. Oka: Proceedings of 9th International Pipeline Conference, Calgary, Canada, Sept. 24–28, 2012, IPC2012-90213.

  12. H. Nakata, C. Kami, and N. Matsuo: JFE Technical Report, No. 12, Oct. 2008, pp. 27–31.

  13. M. Kang, H. Kim, S. Lee, and S. Y. Shin: Met. Mater. Int., 2015, vol. 21, pp. 628–638.

    Article  Google Scholar 

  14. N. Ishikawa, T. Shinmiya, S. Igi, and J. Kondo: Proceedings of 6th International Pipeline Conference, Calgary, Canada, Sept. 25–29, 2006, IPC2006-10245.

  15. S. Goto, H. Nakata, T. Okabe, S. Toyoda, H. Kimura, C. Kami, A. Yonemoto, and T. Inoue: Proceedings of Rio Pipeline 2013, Rio de janeiro, Brazil, Sept. 24–26, 2013, IBP1163_13.

  16. BS7448. Part 1: Method for Determining of KIC, Critical Crack Tip Opening Displacement (CTOD) and Critical J Values of Fracture Toughness for Metallic Materials under Displacement Controlled Monotonic Loading at Quasi-Static Rates, London: British Standards Institution, 1991.

  17. R. K. Ray, J. J. Jonas, M. P. Butron-Guillén, and J. Savoie: ISIJ int., 1994, vol. 34, pp. 927–942.

    Article  Google Scholar 

  18. P. A. Davies, M. Novovic, V. Randle, and P. Bowen: J. Microsc., 2002, vol. 205, Pt 3, pp. 278–284.

    Article  Google Scholar 

  19. I. Pyshmintsev, A. Gervasyev, R. H. Petrov, V. Carretero Olalla, and L. Kestens: Mater. Sci. Forum., 2012, 702-703, pp. 770–703.

    Google Scholar 

  20. J. M. Rodriguez-Ibabe: Mater. Sci. Forum., 1998, vols. 284-286, pp. 51–62.

    Article  Google Scholar 

  21. Y. Ro, S. Chon, J. Yoo, and K. Kang: Proceedings of 9th International Pipeline Conference, Calgary, Canada, Sep. 29–Oct. 3, 2014, IPC2012-90211.

  22. N. Sanchez, Ö. E. Güngö, M. Liebeherr, and N. Ilić: Proceedings of 9th International Pipeline Conference, Calgary, Canada, Sep. 29–28, 2014, IPC2014-33502.

  23. S Han, S. Y. Shin, C. Seo, H. Lee, J. Bae, K. Kim, S. Lee, and N. J. KIM: Metall. Mater. Trans. A, 2009 vol. 40A, pp. 1851–1862.

    Article  Google Scholar 

  24. A. N. Stroh: Proc. R. Soc. Lond., 1954, A223, p. 404.

    Article  Google Scholar 

  25. N. J. Petch: Acta Metall., 1986, vol. 34, pp. 1387–1393.

    Article  Google Scholar 

  26. E.A. Almond, D.H. Timbres, and J.D. Embury: Proc. of 2nd International Conference on Fracture, Chapman & Hall, London, 1969, p. 253.

  27. C. J. McMahon and M. Cohen: Acta. Metall., 1965, vol. 13, pp. 591–604.

    Article  Google Scholar 

  28. K. Shibanuma, S. Aihara, S. Ohtsuka: ISIJ Int., 2014, vol. 54, pp. 1719–1728.

    Article  Google Scholar 

  29. D. Chakrabarti, M. Strangwood, and C. Davis: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 780–795.

    Article  Google Scholar 

  30. F. M. Beremin, A. Pineau, and F. Mudry: Metall. Mater. Trans. A, 1983, vol. 14A, pp. 2277–2287.

    Article  Google Scholar 

  31. G. Z. Wang and J. H. Chen: Int. J. Fract., 1998, vol. 89, pp. 269–284.

    Article  Google Scholar 

  32. S. J. Wu and C. L. Davis: Mater. Sci. Eng. A, 2004, A387–389, pp. 456–460.

    Article  Google Scholar 

  33. D. Bhattacharjee, J. F. Knott, and C. L. Davis: Metall. Mater. Trans. A, 2004, 35A: 121–130.

    Article  Google Scholar 

  34. T. Kunitake, H. Ohtani: Tetsu-to-Hagané, 1967, vol. 53, pp. 1280–1282.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sota Goto.

Additional information

Manuscript submitted September 26, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goto, S., Nakata, H., Toyoda, S. et al. Control of Microstructures and the Practical Properties of API X80 Grade Heavy-Wall High-Frequency Electric Resistance-Welded Pipe with Excellent Low-Temperature Toughness. Metall Mater Trans A 48, 5075–5084 (2017). https://doi.org/10.1007/s11661-017-4242-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-017-4242-3

Navigation