Skip to main content
Log in

Replacement of Ni by Mn in High-Ni-Containing Austenitic Cast Steels used for Turbo-Charger Application

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-temperature tensile properties of austenitic cast steels fabricated by replacing Ni by Mn in a 20 wt pct Ni-containing steel were investigated. In a steel where 8 wt pct Ni was replaced by 9.2 wt pct of Mn, 17.4 and 9.8 pct of ferrite existed in equilibrium phase diagrams and actual microstructures, respectively, because a role of Mn as an austenite stabilizer decreased, and led to deterioration of high-temperature properties. When 2 to 6 wt pct Ni was replaced by 2.3 to 6.9 wt pct Mn, high-temperature properties were comparable to those of the 20 wt pct Ni-containing steel because ferrites were absent, which indicated the successful replacement of 6 wt pct Ni by Mn, with cost reduction of 27 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. R.W.K. Honeycombe: Steels—Microstructure and Properties, Edward Arnold, London, 1981.

    Google Scholar 

  2. R.L. Klueh: Int. Mater. Rev., 2005, vol. 50, pp. 287–310.

    Article  Google Scholar 

  3. V. Lepingle, G. Louis, D. Allue, B. Lefebvre, and B. Vandenberghe: Corros. Sci., 2008, vol. 50 pp. 1011–19.

    Article  Google Scholar 

  4. Y.-J. Kim, D.-G. Lee, H.K. Jeong, Y.-T. Lee, and H. Jang: J. Mater. Eng. Perform., 2009, vol. 19, pp. 700–04.

    Article  Google Scholar 

  5. Z. Li, Q. Yong, Z. Zhang, X. Sun, J. Cao, H. Qi, and Z. Liao: Met. Mater. Int., 2014, vol. 20, pp. 801–06.

    Article  Google Scholar 

  6. S.G. Hong, W.B. Lee, and C.G. Park: J. Nucl. Mater., 2001, vol. 288, pp. 202–07.

    Article  Google Scholar 

  7. K. Dou, L. Meng, Q. Liu, B. Liu, and Y. Huang: Met. Mater. Int., 2016, vol. 22, pp. 349–55.

    Article  Google Scholar 

  8. K. Lee, N. Kang, J. Bae, and C.-W. Lee: Met. Mater. Int., 2016, vol. 22, pp. 842–48.

    Article  Google Scholar 

  9. R. Shukla, S.K. Ghosh, D. Chakrabarti, and S. Chatterjee: Met. Mater. Int., 2015, vol. 21, pp. 85–95.

    Article  Google Scholar 

  10. V.G. Behal and A.S. Melilli: Stainless Steel Castings, ASTM International, Pennsylvania, 1982.

    Google Scholar 

  11. F.C. Nunes, L.H. Almeida, and A.F. Ribeiro: J. Mater. Eng. Perform., 2006 vol. 15, pp. 717–21.

    Article  Google Scholar 

  12. W.-T. Hou and R. W. K. Honeycombe: Mater. Sci. Technol., 1985, vol. 1, pp. 385–89.

    Article  Google Scholar 

  13. W.-T. Hou and R. W. K. Honeycombe: Mater. Sci. Technol., 1985, vol. 1, pp. 390–97.

    Article  Google Scholar 

  14. A.A. Kaya, P. Krauklis, and D.J. Young: Mater. Charact. 2002, vol. 49, pp. 11–21.

    Article  Google Scholar 

  15. E. Otero, A. Pardo, F.J. Perez, J.F. Alvarez, and M.V. Utrilla: Corros. Sci., 1997, vol. 39, pp. 133–45

    Article  Google Scholar 

  16. C. Cuevas-Arteaga, J. Uruchurtu-Chavarin, J. Porcayo-Calderon, G. Izquierdo-Montalvo, and J. Gonzales: Corros. Sci. 2004, vol. 46, pp. 2663–79.

    Article  Google Scholar 

  17. S. Khare and P. Mahajan: Met. Mater. Int., 2015, vol. 21, pp. 445–52.

    Article  Google Scholar 

  18. S. Jung, J. Do, D.-G. Lee, B.-J. Lee, G.-U Cha, and S. Lee: Met. Mater. Int., 2014, vol. 20 pp. 577–83.

    Article  Google Scholar 

  19. R.H. Espy, Weld J.1982, vol. 61 pp. 149–56.

    Google Scholar 

  20. B. Sundman, B. Jansson, and J.-O. Andersson: CALPHAD, 1985, vol. 9, pp. 153–90.

    Article  Google Scholar 

  21. TCFE2000, The Thermo-Calc Steels Database, upgraded by B.-J. Lee and B. Sundman at KTH, Stockholm, 1999.

  22. B.-J. Lee: Pohang University of Science and Technology (POSTECH), Korea, unpublished update of thermodynamic database.

  23. D. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman: Mater. Sci. Eng. A, 2005, vol. 405, pp. 1–10.

    Article  Google Scholar 

  24. S. Jung, C. Jeon, Y.H. Jo, W.-M. Choi, B.-J. Lee, Y.-J. Oh, S. Jang, and S. Lee: Mater. Sci. Eng.A, 2016, vol. 656, pp. 190–99.

    Article  Google Scholar 

  25. A.Bedolla-Jacuinide, L. Arias, and B. Hernandez: J. Mater. Eng. Perform., 2003, vol. 12, pp. 371–82.

    Article  Google Scholar 

  26. T. Sourmail: Mater. Sci. Technol., 2001, vol. 17 pp. 1–14.

    Article  Google Scholar 

  27. P.C. Pistorius, and M. du Toit.: Proceedings Twelfth International Ferroalloys Congress Sustainable Future, Helsinki, Finland. 2010, pp. 911–18.

    Google Scholar 

  28. M.F. Mcguire: Stainless Steels for Design Engineers, ASM International, Ohio, 2008.

    Google Scholar 

  29. H. Hanninen, J. Romu, R. Ilola, J. Tervo, and A. Laitinen: J. Mater. Process Tech., 2001, vol. 117, pp. 424–30.

    Article  Google Scholar 

  30. H.-J. Christ: Mater. Corros., 1998, vol. 49, pp. 258–65.

    Article  Google Scholar 

  31. M. Waldenström: Metall. Trans. A, 1997, vol. 8A, pp. 1963–77.

    Google Scholar 

  32. K.C. Hwang, S. Lee and H.C. Lee: Mater. Sci. Eng. A, 1998, vol.254, pp. 282–95.

    Article  Google Scholar 

  33. S. Jung, S.S. Sohn, Y.H. Jo, W.M. Choi, B.-J. Lee, Y.-J. Oh, G.-Y. Kim, S. Jang and S. Lee: Mater. Sci. Eng. A, 2016, vol. 677, pp.316–24.

    Article  Google Scholar 

  34. T. Ishitsuka and H. Mimura: JSME Int. J. A, 2002, vol. A45, pp. 110–17.

    Article  Google Scholar 

  35. Q. Han, Y. Kang, X. Zhao, L. Gao, and X. Qiu: Int. J. Min. Met. Mater., 2011, vol. 18, pp. 407–13.

    Article  Google Scholar 

  36. S. Lee, D.H. Kim, J.H. Ryu, and K. Shin, Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2595–608.

    Article  Google Scholar 

  37. “London Metal Exchange (April 1st of 2015)”. http://www.lme.com.

Download references

This work was supported by the World Class 300 Project R&D Program under a Grant No. 10050290-2013-39, the Future Material Discovery Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (MSIP) of Korea under a Grant No. NRF-2016M3D1A1023384, and Brain Korea 21 PLUS Project for Center for Creative Industrial Materials. Authors are grateful to Mr. Hyeungjun Kim of Key Yang Precision for his helpful discussion on the fabrication of austenitic cast steels.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted September 13, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jung, S., Jo, Y.H., Jeon, C. et al. Replacement of Ni by Mn in High-Ni-Containing Austenitic Cast Steels used for Turbo-Charger Application. Metall Mater Trans A 48, 568–574 (2017). https://doi.org/10.1007/s11661-016-3878-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3878-8

Keywords

Navigation