Skip to main content
Log in

Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Recently, duplex stainless steels (DSSs) are being increasingly employed in chemical, petro-chemical, nuclear, and energy industries due to the excellent combination of high strength and corrosion resistance. Better understanding of deformation behavior and microstructure evolution of the material under hot working process is significant for achieving desired mechanical properties. In this work, plastic flow curves and microstructure development of the DSS grade 2507 were investigated. Cylindrical specimens were subjected to hot compression tests for different elevated temperatures and strain rates by a deformation dilatometer. It was found that stress–strain responses of the examined steel strongly depended on the forming rate and temperature. The flow stresses increased with higher strain rates and lower temperatures. Subsequently, predictions of the obtained stress–strain curves were done according to the Zener–Hollomon equation. Determination of material parameters for the constitutive model was presented. It was shown that the calculated flow curves agreed well with the experimental results. Additionally, metallographic examinations of hot compressed samples were performed by optical microscope using color tint etching. Area based phase fractions of the existing phases were determined for each forming condition. Hardness of the specimens was measured and discussed with the resulted microstructures. The proposed flow stress model can be used to design and optimize manufacturing process at elevated temperatures for the DSS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. C.U. Jeong, W. Woo, J.Y. Choi, S.H. Choi: Acta Materialia, 2014, vol. 67, pp. 21–31.

    Article  Google Scholar 

  2. E.Y. Guo, H.X. Xie, S.S. Singh, A. Kirubanandham, T. Jing, N. Chawla: Mater. Sci. Eng. A, 2014, vol. 575, pp. 41–47.

    Google Scholar 

  3. S. Spigarelli, M.E. Mehtedi, P. Ricci, C. Mapelli: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4218–4228.

    Article  Google Scholar 

  4. D.N. Zou, K. Wu, Y. Han, W. Zhang, B. Cheng, G.J. Qiao: Mater. Design, 2013, vol. 51, pp. 975–982.

    Article  Google Scholar 

  5. A. Momeni, K. Dehghani, M.C. Poletti: Mater. Chem. Physics, 2013, vol. 139, pp. 747–755.

    Article  Google Scholar 

  6. Y. Han, G.J. Qiao, J.P. Sun, D.N. Zou: Comput. Mater. Sci., 2013, vol. 67, pp. 93–103.

    Article  Google Scholar 

  7. Y. Han, D.N. Zou, Z. Chen, G.W. Fan, W. Zhang: Mater. Characterization, 2011, vol. 62, pp. 198–203.

    Article  Google Scholar 

  8. G.B. Wei, X.D. Peng, A. Hadadzadeh, Y. Mahmoodkhani, W.D. Xie, Y. Yang, M.A. Wells: Mech. Mater., 2015, vol. 89, pp. 241–253.

    Article  Google Scholar 

  9. H. Farnoush, A. Momeni, K. Dehghani, J. Aghazadeh Mohandesi, H. Keshmiri: Mater. Design, 2010, vol. 31, pp. 220–226.

    Article  Google Scholar 

  10. F.C. Ren, J. Chen, F. Chen: Trans. Nonferrous Metals Society of China, 2014, vol. 24, pp. 1407–1413.

    Article  Google Scholar 

  11. A. Momeni and K. Dehghani: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1448–1454.

    Article  Google Scholar 

  12. Y.H. Yang and B. Yan: Mater. Sci. and Eng. A, 2013, vol. 579, pp. 194–201.

    Article  Google Scholar 

  13. F. Tehovnik, B. Arzenšek, B. Arh, D. Skobir, B. Pirnar, B. Žužek: Mater. Tech., 2011, vol. 45, pp. 339–345.

    Google Scholar 

  14. E. Farabi, A.Z. Hanzaki, M.H. Pishbin, M. Moallemi: Mater. Sci. Eng. A, 2015, vol. 641, pp. 360–368.

    Article  Google Scholar 

  15. J. Porntadawit, V. Uthaisangsuk, P. Choungthong: Mater. Sci. Eng. A, 2014, vol. 599, pp. 212–222.

    Article  Google Scholar 

  16. G.B. Wei, X.D. Peng, A. Hadadzadeh, Y. Mahmoodkhani, W.D. Xie, Y. Yang, M.A. Wells: Mech. Mater., 2015, vol. 89, pp. 241–253.

    Article  Google Scholar 

  17. Y. Han, G.W. Liu, D.N. Zou, R. Liu, G.J. Qiao: Mater. Sci. Eng. A, 2013, vol. 565, pp. 342–350.

    Article  Google Scholar 

  18. A. Mohamadizadeh, A. Zarei–Hanzaki, H.R. Abedi: Mech. Mater., 2016, vol. 95, pp. 60–70.

    Article  Google Scholar 

  19. L.Ch. Yang, Y.T. Pan, I.G. Chen, D.Y. Lin: Metals, 2015, vol. 5, pp. 1717–1731.

    Article  Google Scholar 

  20. F.C. Campbell: Elements of Metallurgy and Engineering Alloys, ASM International, Ohio, 2008.

    Google Scholar 

  21. W. Bleck: Material Characterization, 2nd ed., Verlag Mainz, Aachen, p. 92.

  22. A.U. Sulijoadikusumo, O.W. Dillon: Metallurgical effects at high strain rates, Plenum Press, New York–London, 1973, pp. 501–517.

    Book  Google Scholar 

  23. G.E. Dieter, H.A. Kuhn, S.L. Semiatin: Handbook of Workability and Process Design, ASM International, Materials Park, Ohio, OH, 2003, pp. 17–19.

    Google Scholar 

  24. J.Q. Zhang, H.S. Di, K. Mao: Mater. Sci. Eng. A, 2013, vol. 587, pp. 110–122.

    Article  Google Scholar 

  25. R.E. Schramn, R.P. Reed: Metall. Trans. A, 1975, vol. 6, pp. 1345–1351.

    Article  Google Scholar 

  26. J. Charles: In Proceedings of Conference of Duplex Stainless Steel’ 91, Beaune, Les editions de physique, 1991, pp. 3–48.

Download references

Acknowledgments

The authors would like to acknowledge the Office of the Higher Education Commission, Thailand Research Fund (TRF), and King Mongkut’s University of Technology Thonburi (KMUTT) for financial support (TRG5880258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitoon Uthaisangsuk.

Additional information

Manuscript submitted December 20, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kingklang, S., Uthaisangsuk, V. Investigation of Hot Deformation Behavior of Duplex Stainless Steel Grade 2507. Metall Mater Trans A 48, 95–108 (2017). https://doi.org/10.1007/s11661-016-3829-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3829-4

Keywords

Navigation