Skip to main content
Log in

Effect of Harmonic Microstructure on the Corrosion Behavior of SUS304L Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Corrosion behavior of a harmonic structured SUS304L austenitic stainless steel was examined and compared with nonharmonic structured SUS304L stainless steel and conventional 304 stainless steel in 3.5 pct NaCl solution. The study was performed using linear polarization, potentiodynamic polarization, cyclic polarization, and a salt fog exposure test for 30 days. Characterization was accomplished using a scanning electron microscope, an electron probe microanalyzer, and Raman spectroscopy. Improved pitting corrosion resistance was found in the case of the harmonic structured steel as compared to that of the nonharmonic and the conventional 304 stainless steel. Harmonically distributed fine-grained structure, less porosity, and higher fraction of passive α-FeOOH are attributed to the improvement in corrosion resistance of the harmonic structured steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. G.E. Dieter, in Mechanical Metallurgy, ed. by S.I. Metric (McGraw-Hill Book Company, Singapore, 1988).

    Google Scholar 

  2. C.C. Koch: Mater. Sci. Forum, 1992, vol. 88, pp. 243–62.

    Article  Google Scholar 

  3. B.S. Murty and S Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101–41.

    Article  Google Scholar 

  4. Y. Zhao, X. Liao, Z. Jin, R. Valiev, and Y. Zhu: Acta Mater., 2004, vol. 52, pp. 4589–99.

    Article  Google Scholar 

  5. V. Stolyarov, Y. Zhu, I. Alexandrov, T. Lowe, and R. Valiev: Mater. Sci. Eng. A, 2001, vol. 299, pp. 59–67.

    Article  Google Scholar 

  6. T. Roland, D. Retraint, K. Lu, and J. Lu: Mater. Sci. Eng. A, 2007, vols. 445–46, pp. 281–88.

    Article  Google Scholar 

  7. P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal, and V. Singh: J. Mater. Eng. Perf., 2014, vol. 23, pp. 4055–64.

    Article  Google Scholar 

  8. K. Lu, J.T. Wang, and W.D. Wei: J. Appl. Phys., 1991, vol. 69, pp. 522–24.

    Article  Google Scholar 

  9. U. Erb, A.M. El-Sherik, G. Palumbo, and K.T. Aust: Nanostruct. Mater., 1993, vol. 2, pp. 383–90.

    Article  Google Scholar 

  10. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–14.

    Article  Google Scholar 

  11. C.C. Koch: Scripta Mater., 2003, vol. 49, pp. 657–62.

    Article  Google Scholar 

  12. Z. Lee, D.B. Witkin, V. Radmilovic, E.J. Lavernia, and S.R. Nutt: Mater. Sci. Eng. A, 2005, vols. 410–411, pp. 462–67.

    Article  Google Scholar 

  13. B. Srinivasarao, K. Oh-ishi, T. Ohkubo, T. Mukai, and K. Hono: Scripta Mater., 2008, vol. 58, pp. 759–62.

    Article  Google Scholar 

  14. Q.H. Bui: J. Mater. Sci., 2012, vol. 47, pp. 1902–09.

    Article  Google Scholar 

  15. D. Orlov, H. Fujiwara, and K. Ameyama: Mater. Trans.(JIM), 2013, vol. 54, pp. 1549–53.

    Article  Google Scholar 

  16. C. Sawangrat, O. Yamaguchi, S.K. Vajpai, and K. Ameyama: Mater. Trans. (JIM), 2014, vol. 55, pp. 99–105.

    Article  Google Scholar 

  17. S.K. Vajpai, K. Ameyama, M. Ota, T. Watanabe, R. Maeda, T. Sekiguchi, G. Dirass, and D. Tingaud: IOP Conf. Series: Mater. Sci. Eng., 2014, vol. 63, p. 012030.

    Article  Google Scholar 

  18. Z. Zhang, D. Orlov, S.K. Vajpai, B. Tong, and K. Ameyama: Adv. Eng. Mater., 2015, vol. 17, pp. 791–95.

    Article  Google Scholar 

  19. C. Sawangrat, S. Kato, D. Orlov, and K. Ameyama: J. Mater. Sci., 2014, vol. 49, pp. 6579–85.

    Article  Google Scholar 

  20. O.P. Ciuca, M. Ota, S. Deng, and K. Ameyama: Mater. Trans. (JIM), 2013, vol. 54, pp. 1629–33.

    Article  Google Scholar 

  21. M. Ota, K. Shimojo, S. Okada, S.K. Vajpai, and K. Ameyama: J. Powder Metall. Mining, 2014, vol. 3, p. 122.

    Google Scholar 

  22. B.V. Mahesh and R.K. Singh Raman: Metall. Mater. Trans. A, 2014, vol. 45, pp. 5799–5822.

    Article  Google Scholar 

  23. K.D. Ralston and N. Birbilis: Corrosion, 2010, vol. 66, pp. 075005-075013.

    Article  Google Scholar 

  24. K.D. Ralston, D. Fabijanic, and N. Birbilis: Electrochim. Acta, 2011, vol. 56, pp. 1729–36.

    Article  Google Scholar 

  25. W. Zeiger, M. Schneider, D. Scharnweber, and H. Worch: Nanostruct. Mater., 1995, vol. 6, pp. 1013–16.

    Article  Google Scholar 

  26. W. Ye, Y. Li, and F. Wang: Electrochim. Acta, 2006, vol. 51, pp. 4426–32.

    Article  Google Scholar 

  27. R.K. Gupta, R.K. Singh Raman, C.C. Koch, and B.S. Murty: Int. J. Electrochem. Sci., 2013, vol. 8, pp. 6791–6806.

    Google Scholar 

  28. R. Rofagha, R. Langer, A.M. El-Sherik, U. Erb, G. Palumbo, and K.T. Aust: Scripta Metall. Mater., 1991, vol. 25, pp. 2867–72.

    Article  Google Scholar 

  29. E.E. Oguzie, Y. Li, and F. H. Wang: Electrochim. Acta, 2007, vol. 52, pp. 6988–96.

    Article  Google Scholar 

  30. E. Kus, S. Nutt, and F. Mansfeld: ECS Trans., 2006, vol. 1 (4), pp. 29–42.

    Google Scholar 

  31. S. Gollapudi: Corros. Sci., 2012, vol. 62, pp. 90–94.

    Article  Google Scholar 

  32. A.M. Xavior and M. Adithan: J. Mater. Process. Technol., 2009, vol. 209, pp. 900–09.

    Article  Google Scholar 

  33. Z. Zhang, S.K. Vajpai, D. Orlov, and K. Ameyama: Mater. Sci. Eng. A, 2014, vol. 598, pp. 106–13.

    Article  Google Scholar 

  34. T. Sekiguchi, K. Ono, H. Fujiwara, and K. Ameyama: Mater. Trans. (JIM), 2010, vol. 51, pp. 39–45.

    Article  Google Scholar 

  35. H. Fujiwara, T. Kawabata, H. Miyamoto, and K. Ameyama: Mater. Trans. (JIM), 2013, vol. 54, pp. 1619–23.

    Article  Google Scholar 

  36. ASTM B117-11: Standard Practice for Operating Salt Spray (Fog) Apparatus, 2011.

  37. ASTM G102-89: Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, Annual Book of ASTM Standards (ASTM, West Conshohocken, PA, 1999) vol. 3, p. 416.

  38. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita, and H. Uchida: Corr. Sci., 2006, vol. 48, pp. 2799–2812.

    Article  Google Scholar 

  39. M. Yamashita, H. Miyuki, Y. Matsuda, H. Nagano, and T. Misawa: Corr. Sci., 1994, vol. 36, pp. 283–99.

    Article  Google Scholar 

  40. Y. Waseda and S. Suzuki: Characterization of Corrosion Products on Steel Surfaces, Series: Advances in Materials Research, Springer, New York, NY, 2006, vol. 7.

  41. S.J. Oh, D.C Cook, and H.E. Townsend: Hyperfine Interactions, 1998, vol. 112, pp. 59–65.

    Article  Google Scholar 

  42. ASTM G1-03: Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, 2011.

  43. Raman, S. Nasrazadani, and L. Sharma: Metallography, 1989, vol. 22, pp. 79–96.

    Article  Google Scholar 

  44. R.A. Antunes, I. Costa, and D. Lúcia Araújo de Faria: Mater. Res., 2003, vol. 6, pp. 403–08

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mondal.

Additional information

Manuscript submitted February 22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rai, P.K., Shekhar, S., Nakatani, M. et al. Effect of Harmonic Microstructure on the Corrosion Behavior of SUS304L Austenitic Stainless Steel. Metall Mater Trans A 47, 6259–6269 (2016). https://doi.org/10.1007/s11661-016-3758-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3758-2

Keywords

Navigation