Skip to main content
Log in

A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A thermodynamic-based model to predict the fraction of martensite in steels with undercooling has been developed. The model utilizes the thermodynamic driving force to describe the transformation curve and it is able to predict the fraction of athermal martensite at quenching to different temperatures for low alloy steels. The only model parameter is a linear function of the martensite start temperature (M s), and the model predicts that a steel with a higher M s has a lower difference between the martensite start and finish temperatures. When the present model is combined with a previously developed thermodynamic-based model for M s, the model predictions of the full martensite transformation curve with undercooling are in close agreement with literature data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia and R. Honeycombe: Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, 2006.

  2. A.R. Entwisle: Metall. Trans., 1971, vol. 2, pp. 2395–2407.

    Article  Google Scholar 

  3. W.J. Harris and M. Cohen: Trans. AIME, 1949, vol. 180, pp. 447–70.

    Google Scholar 

  4. J.C. Fisher, J.H. Hollomon, and D. Turnbull: Metals Trans., 1949, vol. 185, pp. 691–700.

    Google Scholar 

  5. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  6. B. Skrotzki: J. Phys. IV France, 1991, vol. 1, pp. 367–72.

    Article  Google Scholar 

  7. H.Y. Yu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2499–2506.

    Article  Google Scholar 

  8. J.R.C. Guimaraes and P.R. Rios: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2–4.

    Article  Google Scholar 

  9. S.J. Lee and Y.K. Lee: Acta Mater., 2008, vol. 56, pp. 1482–90.

    Article  Google Scholar 

  10. A. Stormvinter, A. Borgenstam, and J. Ågren: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 3870–79.

    Article  Google Scholar 

  11. F. Huyan, P. Hedström, and A. Borgenstam: Mater. Today: Proc., 2015, vol. 2S, pp. S561–64.

    Article  Google Scholar 

  12. A.B. Greninger and A.R. Troiano: Trans. AIME, 1940, vol. 140, pp. 307–36.

    Google Scholar 

  13. R.A. Grange and H.M. Stewart: Trans. AIME, 1946, vol. 167, pp. 467–501.

    Google Scholar 

  14. E. R. Morgan and T. Ko: Acta Metall., 1953, vol. 1, pp. 36–48.

    Article  Google Scholar 

  15. M.G. Mendiratta and G. Krauss: Metall. Trans., 1972, vol. 3, pp. 1755–60.

    Article  Google Scholar 

  16. S.M.C. van Bohemen and J. Sietsma: Mater. Sci. Technol., 2009, vol. 25, pp. 1009–12.

    Article  Google Scholar 

  17. C.I. Magee: in Phase Transformation, H.I. Aronson and V.F. Zackay, ASM, Materials Park, OH, 1970.

  18. S.J. Lee and C.J. van Tyne: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 422–27.

    Article  Google Scholar 

  19. J.O. Andersson, T. Helander, L. Höglund, P. Shi, and B. Sundman: CALPHAD, 2002, vol. 26, pp. 273–312.

    Article  Google Scholar 

  20. J.C. Fisher: Trans. AIME, 1949, vol. 185, pp. 688–90.

    Google Scholar 

  21. P. Pradhan and G.S. Ansell: Metall. Mater. Trans. A, 1978, vol. 9A, pp. 793–801.

    Article  Google Scholar 

  22. S.J. Lee and Y.K. Lee: Mater. Sci. Forum, 2005, vol. 475–479, pp. 3169–72.

    Article  Google Scholar 

  23. V.S. Warke, R.D. Sisson Jr., and M.M. Makhlouf: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 569–72.

    Article  Google Scholar 

  24. S.J. Lee, S. Lee, and B.C. De Cooman: Int. J. Mater. Res., 2013, vol. 104, pp. 423–29.

    Article  Google Scholar 

  25. K. Zhu, H. Chen, J.P. Masse, O. Bouaziz, and G. Gachet: Acta Mater., 2013, vol. 61, pp. 6025–36.

    Article  Google Scholar 

  26. S.J. Lee: Adv. Mater. Res., 2013, vol. 798–799, pp. 39–44.

    Google Scholar 

  27. American Society for Metals: Atlas of Isothermal Transformation and Cooling Transformation Diagrams, American Society for Metals, Materials Park, OH, 1977.

    Google Scholar 

  28. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349–59.

    Google Scholar 

  29. R. Brook, A.R. Entwistle, and E.F. Ibrahim: J. Iron Steel Inst., 1960, vol. 195, pp. 292–98.

    Google Scholar 

  30. E.R. Petty (ed.): Martensite: Fundamentals and Technology, Longmans, London, 1970.

    Google Scholar 

Download references

Acknowledgments

This work was performed within the VINN Excellence Center Hero-m, financed by VINNOVA, the Swedish Governmental Agency for Innovation Systems, Swedish Industry, and KTH Royal Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Huyan.

Additional information

Manuscript submitted March 15, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huyan, F., Hedström, P., Höglund, L. et al. A Thermodynamic-Based Model to Predict the Fraction of Martensite in Steels. Metall Mater Trans A 47, 4404–4410 (2016). https://doi.org/10.1007/s11661-016-3604-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3604-6

Keywords

Navigation