Skip to main content
Log in

Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An induction heat treatment is favorable compared to a conventional one mainly due to significant time and cost savings. Therefore, in this study, the microstructure property relationships during induction and conventional heat treatment of a heat treatable steel 42CrMo4 is investigated. The yield strength and hardness is slightly higher for the conventionally heat-treated steel, whereas the induction heat-treated condition exhibits a roughly 30 J/cm2 higher impact energy. In a previous investigation of the authors, it has been proved that the difference in yield strength originates from the smaller block size of the conventionally heat-treated steel, which was already present after hardening. In the present work, it can be shown that during tempering the martensitic blocks become equi-axed ferrite grains due to recrystallization as revealed by electron back scatter diffraction. Nevertheless, a larger grain size usually is less favorable for the impact toughness of steels. Therefore, another mechanism is responsible for the higher impact energy of the induction hardened and tempered steel. With the aid of transmission electron microscopy a finer distribution of cementite was observed in the induction heat-treated samples. The delay of recovery is the reason for the presence of finer cementite in case of the induction heat-treated steel. Here, the higher heating rates and shorter process times reduce the annihilation of dislocation and as a consequence provide more nucleation sites for precipitation of cementite during tempering. From the obtained experimental results, it is believed that the finer distribution of carbides causes the observed higher impact toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. 1. S. T. Ahn, D. S. Kim, and W. J. Nam, J. Mater. Process. Technol. 160, 54 (2005).

    Article  Google Scholar 

  2. 2. C. Revilla, B. López, and J. M. Rodriguez-Ibabe, Mater. Des. 62, 296 (2014).

    Article  Google Scholar 

  3. J. M. Mendizabal, L., Rodriguez-Ibabe, Mater. Sci. Technol. (2005), pp. 77–84.

  4. C. Revilla, P. Uranga, B. López, and J.M. Rodriguez-Ibabe, in AIST Steel Prop. Appl. Conf. Proc.Comb. with MS T’12, Mater. Sci. Technol. 2012 (2012), pp. 267–74.

  5. 5. H. Leitner, D. Caliskanoglu, and H. Clemens, BHM Berg- und Hüttenmännische Monatshefte 149, 172 (2004).

    Google Scholar 

  6. 6. S. Sackl, H. Leitner, M. Zuber, H. Clemens, and S. Primig, Metall. Mater. Trans. A 45, 5657 (2014).

    Article  Google Scholar 

  7. K. C. Smith, J. P. Wise, and G. Krauss, Prog. Heat Treat. Surf. Eng. (2000), pp. 379–86.

  8. 8. J. Grosch, B. Kocjancic, and G. Reichelt, Haerterei Technsiche Mitteilungen 39, 199 (1984).

    Google Scholar 

  9. Krauss, G. (2012). Phase Transform Steels (pp. 126–150). Elsevier, Amsterdam

    Book  Google Scholar 

  10. 10. G. Speich and W. Leslie, Metall. Trans. A 3, 1043 (1972).

    Article  Google Scholar 

  11. 11. R. C. Thomson and M. K. Miller, Appl. Surf. Sci. 94-95, 313 (1996).

    Article  Google Scholar 

  12. M.K. Miller, P.A. Beaven, and G.D.W. Smith, Metall. Trans. A 12, 1197 (1981).

    Article  Google Scholar 

  13. E. R. Parker, Metall. Trans. A, 8, 1025–1042 (1977).

    Article  Google Scholar 

  14. 14. H. Bhadeshia and R. Honeycombe, Steels Microstructure and Properties, 3rd ed. (Butterworth-Heinemann (Elsevier), Oxford, 2006).

    Google Scholar 

  15. 15. K. Hanawa and T. Mimura, Metall. Trans. A 15A, 1147 (1984).

    Article  Google Scholar 

  16. 16. D. Dengel, Haerterei Technsiche Mitteilungen 39, 182 (1984).

    Google Scholar 

  17. 17. S. Primig and H. Leitner, Thermochim. Acta 526, 111 (2011).

    Article  Google Scholar 

  18. 18. T. Furuhara, K. Kobayashi, and T. Maki, ISIJ Int. 44, 1937 (2004).

    Article  Google Scholar 

  19. 19. R. N. Caron and G. Krauss, Metall. Trans. 3, 2381 (1972).

    Article  Google Scholar 

  20. 20. M. Hayakawa, S. Matsuoka, K. Tsuzaki, H. Hanada, and M. Sugisaki, Scr. Mater. 47, 655 (2002).

    Article  Google Scholar 

  21. 21. S. Xing, Z. Chen, Y. Ma, and H. Li, J. Iron Steel Res. Int. 19, 43 (2012).

    Article  Google Scholar 

  22. 22. J. Wu, P. J. Wray, C. I. Garcia, M. Hua, and A. J. Deardo, ISIJ Int. 45, 254 (2005).

    Article  Google Scholar 

  23. 23. F. Foroozmehr, A. Najafizadeh, and A. Shafyei, Mater. Sci. Eng. A 528, 5754 (2011).

    Article  Google Scholar 

  24. 24. L. S. Darken, Trans. AIME 175, 184 (1948).

    Google Scholar 

  25. 25. A. A. Zhukov, Met. Sci. Heat Treat. 18, 1070 (1976).

    Article  Google Scholar 

  26. 26. J. Verhoeven, J. Mater. Eng. Perform. 9, 286 (2000).

    Article  Google Scholar 

  27. G. Krauss, Metall. Mater. Trans. B 34, 781 (2003).

    Article  Google Scholar 

Download references

Acknowledgments

The financial support by the Austrian Federal Ministry of Economy, Family and Youth and the National Foundation for Research, Technology and Development is gratefully acknowledged. The authors want to thank Tomasz Wojcik for his help regarding the TEM investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Sackl.

Additional information

Manuscript submitted January 22, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sackl, S., Zuber, M., Clemens, H. et al. Induction Tempering vs Conventional Tempering of a Heat-Treatable Steel. Metall Mater Trans A 47, 3694–3702 (2016). https://doi.org/10.1007/s11661-016-3534-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3534-3

Keywords

Navigation