Skip to main content
Log in

Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The low-cycle fatigue behavior of two direct-aged versions of the nickel-based superalloy Inconel 718 (IN718DA) was examined in the low-strain amplitude regime at intermediate temperature. High variability in fatigue life was observed, and abnormally short lifetimes were systematically observed to be due to crack initiation at (sub)-surface non-metallic inclusions. However, crack initiation within (sub)-surface non-metallic inclusions did not necessarily lead to short fatigue life. The macro- to micro-mechanical mechanisms of deformation and damage have been examined by means of detailed microstructural characterization, tensile and fatigue mechanical tests, and in situ tensile testing. The initial stages of crack micro-propagation from cracked non-metallic particles into the surrounding metallic matrix occupies a large fraction of the fatigue life and requires extensive local plastic straining in the matrix adjacent to the cracked inclusions. Differences in microstructure that influence local plastic straining, i.e., the δ-phase content and the grain size, coupled with the presence of non-metallic inclusions at the high end of the size distribution contribute strongly to the fatigue life variability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. J. M. Oblak, D. F. Paulonis, and D. S. Duvall: Metall. Trans., 1974, vol. 5, pp. 143–153.

    Article  Google Scholar 

  2. D. Fournier and A. Pineau: Metall. Trans. A, 1977, vol. 8, pp. 1095–1105.

    Article  Google Scholar 

  3. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Acta Metall., 1988, vol. 36, pp. 847–864.

    Article  Google Scholar 

  4. R. E. Schafrik and R. Sprague: Adv. Mater. Process., 2004, vol. 162, pp. 27–30.

    Google Scholar 

  5. D.F. Paulonis and J.J. Schirra: in Superalloys 718, 625, 706 and Various Derivatives, 2001, pp. 13–23.

  6. N. Späth, V. Zerrouki, P. Poubanne, and J.Y. Guedou: in Superalloys 718, 625, 706 and Various Derivatives, 2001, pp. 173–83.

  7. Y. C. Fayman: Mater. Sci. Eng., 1987, vol. 92, pp. 159–171.

    Article  Google Scholar 

  8. D.D. Krueger: in Superalloy 718 Metallurgy and Application, 1989, pp. 279–96.

  9. Snecma-SAFRAN Database for LCF Tests Performed under Strain-Controlled Conditions.

  10. P.R. Bhowal and A.M. Wusatowska-sarnek: in Superalloys 718, 625, 706 and Derivatives, 2005, pp. 341–49.

  11. T. Connolley, P. A. S. Reed, and M. J. Starinkm: Mater. Sci. Eng. A, 2003, vol. 340, pp. 139–154.

    Article  Google Scholar 

  12. B. Pieraggi and J.F. Uginet: in Superalloys 718, 625, 706 and Various Derivatives, 1994, pp. 535–44.

  13. T. Connolley, M.J. Starink, and P.A.S. Reed: in Superalloys 2000, 2000, pp. 435–44.

  14. T. Denda, P. L. Bretz, and J. K. Tien: Int. J. Fatigue, 1992, vol. 14, p. 420.

    Google Scholar 

  15. F. Alexandre, R. Piques, S. Deyber, and A. Pineau: in ECF14, 2002.

  16. F. Alexandre, S. Deyber, and A. Pineau: Scripta Mater., 2004, vol. 50, pp. 25–30.

  17. L. A. James: Eng. Fract. Mech., 1986, vol. 25, pp. 305–314.

    Article  Google Scholar 

  18. D. D. Krueger, S. D. Antolovich, and R. H. Van Stone: Metall. Trans. A, 1987, vol. 18A, pp. 1431–1449.

    Article  Google Scholar 

  19. M. Abikchi, T. Billot, J. Crepin, A. Longuet, T.F. Morgeneyer, and A. Pineau: in 13th International Conference on Fracture, 2013, pp. 1–11.

  20. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J. Y. Guédou, J. F. Uginet, and P. Héritier: Mater. Sci. Eng. A, 2008, vol. 486, pp. 117–122.

    Article  Google Scholar 

  21. J.W. Brooks and P.J. Bridges: in Superalloys 1988, 1988, pp. 33–42.

  22. J. He, S. Fukuyama, and K. Yokogawa: J. Mater. Sci. Technol., 1994, vol. 10, pp. 293–303.

    Google Scholar 

  23. A. Pineau and S. D. Antolovich: Eng. Fail. Anal., 2009, vol. 16, pp. 2668–2697.

    Article  Google Scholar 

  24. M. M. Shenoy, R. S. Kumar, and D. L. McDowell: Int. J. Fatigue, 2005, vol. 27, pp. 113–127.

    Article  Google Scholar 

  25. J. Zhang, R. Prasannavenkatesan, M. M. Shenoy, and D. L. McDowell: Eng. Fract. Mech., 2009, vol. 76, pp. 315–334.

    Article  Google Scholar 

  26. A. Mitchell: in Superalloys 718, 625, 706 and Derivatives, 2005, pp. 299–310.

  27. A. Mitchell and T. Wang: in Superalloys 718, 625, 706 and Various Derivatives, 2001, pp. 81–91.

  28. L. A. James and W. J. Mills: Eng. Fract. Mech., 1985, vol. 22, pp. 797–817.

    Article  Google Scholar 

  29. S. Ponnelle, B. Brethes, and A. Pineau: in Superalloys 718, 625, 706 and Various Derivatives, 2001, pp. 307–19.

  30. M. Sundararaman, P. Mukhopadhyay, and S. Banerjee: Metall. Trans. A, 1988, vol. 19, pp. 453–465.

    Article  Google Scholar 

  31. S. Azadian, L. Y. Wei, and R. Warren: Mater. Charact., 2004, vol. 53, pp. 7–16.

    Article  Google Scholar 

  32. J.-R. Vaunois, J. Cormier, P. Villechaise, A. Devaux, and B. Flageolet: in Superalloy 718 and Derivatives, 2010, pp. 199–213.

  33. B. Max, B. Viguier, E. Andrieu, and J. M. Cloue: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5431–5441.

    Article  Google Scholar 

  34. D. L. Kohlstedt: J. Mater. Sci., 1973, vol. 8, pp. 777–786.

    Article  Google Scholar 

  35. D. Dudzinski, A. Devillez, A. Moufki, D. Larrouquère, V. Zerrouki, and J. Vigneau: Int. J. Mach. Tools Manuf., 2004, vol. 44, pp. 439–456.

    Article  Google Scholar 

  36. D. Ulutan and T. Ozel: Int. J. Mach. Tools Manuf., 2011, vol. 51, pp. 250–280.

    Article  Google Scholar 

  37. S. M. Afazov, A. A. Becker, and T. H. Hyde: Int. J. Adv. Manuf. Technol., 2010, vol. 51, pp. 711–722.

    Article  Google Scholar 

  38. P.R. Bhowal, D. Stolz, A.M. Wusatowska-Sarnek, and R. Montero: in Superalloys 2008, 2008, pp. 417–23.

  39. J. K. Hong, N. K. Park, S. J. Kim, and C. Y. Kang: Mater. Sci. Forum, 2005, vol. 502, pp. 249–256.

    Article  Google Scholar 

  40. P. S. Karamched and A. J. Wilkinson: Acta Mater., 2011, vol. 59, pp. 263–272.

    Article  Google Scholar 

  41. M. Nageswara Rao: Trans. Indian Inst. Met., 2010, vol. 63, pp. 363–367.

    Article  Google Scholar 

  42. M.J. Donachie and S.J. Donachie: SUPERALLOYS a Technical Guide, 2nd ed., ASM International, Materials Park, 2002.

    Google Scholar 

  43. J. Warren and D. Y. Wei: Mater. Sci. Eng. A, 2006, vol. 428, pp. 106–115.

    Article  Google Scholar 

  44. T. H. Sanders, R. E. Frishmuth, and G. T. Embley: Metall. Trans. A, 1981, vol. 12, pp. 1003–1010.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are particularly grateful to Snecma-SAFRAN group for providing the material and for financial support. The authors would like to thank Anne-Laure Gorge, engineer in the Department of Physics and Mechanics of Materials Department at the Institut Pprime, for fruitful discussions and technical help in conducting several experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damien Texier or Jonathan Cormier.

Additional information

Manuscript submitted July 27, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Texier, D., Gómez, A.C., Pierret, S. et al. Microstructural Features Controlling the Variability in Low-Cycle Fatigue Properties of Alloy Inconel 718DA at Intermediate Temperature. Metall Mater Trans A 47, 1096–1109 (2016). https://doi.org/10.1007/s11661-015-3291-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3291-8

Keywords

Navigation