Skip to main content
Log in

Grain Boundary Character Distributions in Nanocrystalline Metals Produced by Different Processing Routes

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantly random high angle (73 pct). These grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. 1. M. A. Meyers, A. Mishra and D. J. Benson, Prog Mater Sci 2006, vol. 51, pp. 427-556.

    Article  Google Scholar 

  2. 2. L. Mishnaevsky, et al., Mater. Sci. Eng. R. 2014, vol. 81, pp. 1-19.

    Article  Google Scholar 

  3. R. A. Prado, J. Benfer, D. Facchini, N. Mahalanobis, and F. Gonzalez, Prod. Finish, 2012.

  4. 4. Z. C. Cordero, et al., Metall. Mater. Trans. A. 2014, vol. 45A, pp. 3609-3618.

    Article  Google Scholar 

  5. 5. P. W. Bridgman, J Appl Phys 1943, vol. 14, pp. 273-283.

    Article  Google Scholar 

  6. 6. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog Mater Sci 2000, vol. 45, pp. 103-189.

    Article  Google Scholar 

  7. 7. A. P. Zhilyaev and T. G. Langdon, Prog Mater Sci 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  8. 8. Y. B. Zhang, O. V. Mishin, N. Kamikawa, A. Godfrey, W. Liu and Q. Liu, Mat Sci Eng A 2013, vol. 576, pp. 160-166.

    Article  Google Scholar 

  9. 9. S. C. Tjong and H. Chen, Mater. Sci. Eng. R. 2004, vol. 45, pp. 1-88.

    Article  Google Scholar 

  10. 10. U. Erb, A. M. El-Sherik, G. Palumbo and K. T. Aust, Nanostruct Mater 1993, vol. 2, pp. 383-390.

    Article  Google Scholar 

  11. 11. A. Robertson, U. Erb and G. Palumbo, Nanostruct Mater 1999, vol. 12, pp. 1035-1040.

    Article  Google Scholar 

  12. 12. H. Gleiter, Prog Mater Sci 1989, vol. 33, pp. 223-315.

    Article  Google Scholar 

  13. 13. R. J. Asaro, P. Krysl and B. Kad, Phil Mag Lett 2003, vol. 83, pp. 733-743.

    Article  Google Scholar 

  14. 14. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter, Phil Mag Lett 2003, vol. 83, pp. 385-393.

    Article  Google Scholar 

  15. 15. J. Schiotz and K. W. Jacobsen, Science 2003, vol. 301, pp. 1357-1359.

    Article  Google Scholar 

  16. 16. T. J. Rupert and C. A. Schuh, Acta Materialia 2010, vol. 58, pp. 4137-4148.

    Article  Google Scholar 

  17. 17. H. A. Padilla and B. L. Boyce, Exp Mech 2010, vol. 50, pp. 5-23.

    Article  Google Scholar 

  18. 18. G. Herzer, IEEE Trans. Magn. 1990, vol. 26, pp. 1397-1402.

    Article  Google Scholar 

  19. 19. G. Palumbo, E. M. Lehockey and P. Lin, JOM 1998, vol. 50, pp. 40-43.

    Article  Google Scholar 

  20. 20. A. J. Schwartz, W. E. King and M. Kumar, Scripta Materialia 2006, vol. 54, pp. 963-968.

    Article  Google Scholar 

  21. 21. R. Z. Valiev, A. V. Sergueeva and A. K. Mukherjee, Scripta Materialia 2003, vol. 49, pp. 669-674.

    Article  Google Scholar 

  22. 22. M. Dao, L. Lu, Y. F. Shen and S. Suresh, Acta Materialia 2006, vol. 54, pp. 5421-5432.

    Article  Google Scholar 

  23. 23. L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian and K. Lu, Science 2004, vol. 304, pp. 422-426.

    Article  Google Scholar 

  24. 24. K. Barmak, et al., J. Vac. Sci. Technol. A 2014, vol. 32, p. 7.

    Article  Google Scholar 

  25. 25. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall Trans A 1990, vol. 21, pp. 2333-2337.

    Article  Google Scholar 

  26. 26. B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 1992, vol. 40, pp. 205-219.

    Article  Google Scholar 

  27. 27. N. Hansen and D. J. Jensen, Philos T R Soc A 1999, vol. 357, pp. 1447-1469.

    Article  Google Scholar 

  28. 28. D. A. Hughes and N. Hansen, Acta Materialia 1997, vol. 45, pp. 3871-3886.

    Article  Google Scholar 

  29. 29. S. Qu, et al., Acta Materialia 2009, vol. 57, pp. 1586-1601.

    Article  Google Scholar 

  30. 30. H. J. Fecht, Nanostruct Mater 1995, vol. 6, pp. 33-42.

    Article  Google Scholar 

  31. 31. J. Eckert, J. C. Holzer, C. E. Krill and W. L. Johnson, J Mater Res 1992, vol. 7, pp. 1751-1761.

    Article  Google Scholar 

  32. 32. D. B. Witkin and E. J. Lavernia, Prog Mater Sci 2006, vol. 51, pp. 1-60.

    Article  Google Scholar 

  33. 33. E. Hellstern, H. J. Fecht, C. Garland and W. L. Johnson, Mat. Res. Soc. Symp. Proc. 1989, vol. 132, pp. 137-142.

    Article  Google Scholar 

  34. S. Ruan and C. A. Schuh, J Appl Phys 2010, vol. 107, 073512.

    Article  Google Scholar 

  35. 35. J. K. Mackenzie, Biometrika 1958, vol. 45, pp. 229-240.

    Article  Google Scholar 

  36. 36. J. K. Mason and C. A. Schuh, Acta Materialia 2009, vol. 57, pp. 4186-4197.

    Article  Google Scholar 

  37. 37. A. J. Detor and C. A. Schuh, Acta Materialia 2007, vol. 55, pp. 371-379.

    Article  Google Scholar 

  38. 38. I. Roy, H. W. Yang, L. Dinh, I. Lund, J. C. Earthman and F. A. Mohamed, Scripta Materialia 2008, vol. 59, pp. 305-308.

    Article  Google Scholar 

  39. 39. O. V. Mishin, D. J. Jensen and N. Hansen, Mat Sci Eng A 2003, vol. 342, pp. 320-28.

    Article  Google Scholar 

  40. 40. D. Viladot, et al., J Microsc 2013, vol. 252, pp. 23-34.

    Article  Google Scholar 

  41. 41. R. R. Keller and R. H. Geiss, J Microsc 2012, vol. 245, pp. 245-251.

    Article  Google Scholar 

  42. 42. P. W. Trimby, Ultramicroscopy 2012, vol. 120, pp. 16-24.

    Article  Google Scholar 

  43. 43. W. D. Nix and H. J. Gao, J Mech Phys Solids 1998, vol. 46, pp. 411-425.

    Article  Google Scholar 

  44. 44. D. G. Brandon, Acta Metallurgica 1966, vol. 14, pp. 1479-&.

    Article  Google Scholar 

  45. H. Grimmer, W. Bollmann, D. H. Warrington (1974) Acta Crystallogr A vol. A 30, pp. 197-207.

    Article  Google Scholar 

  46. 46. C. A. Schuh, M. Kumar and W. E. King, J Mater Sci 2005, vol. 40, pp. 847-852.

    Article  Google Scholar 

  47. 47. Y. Xun and F. A. Mohamed, Mater. Sci Eng. A. 2011, vol. 528, pp. 5446-5452.

    Article  Google Scholar 

  48. 48. A. P. Zhilyaev, B. K. Kim, G. V. Nurislamova, M. D. Baro, J. A. Szpunar and T. G. Langdon, Scripta Materialia 2002, vol. 46, pp. 575-580.

    Article  Google Scholar 

  49. 49. K. S. Raju, M. G. Krishna, K. A. Padmanabhan, K. Muraleedharan, N. P. Gurao and G. Wilde, Mat Sci Eng A 2008, vol. 491, pp. 1-7.

    Article  Google Scholar 

  50. 50. D. A. Hughes and N. Hansen, Phys. Rev. Lett. 2001, vol. 87, p. 4.

    Google Scholar 

  51. M. Grewer, C. Braun, J. Lohmiller, P. A. Gruber, V. Honkimäki, and R. Birringer, ArXiv 2014.

  52. 52. Y. W. Xun, E. J. Lavernia and F. A. Mohamed, Metall. Mater. Trans. A. 2004, vol. 35A, pp. 573-581.

    Article  Google Scholar 

  53. 53. C. Suryanarayana, Prog Mater Sci 2001, vol. 46, pp. 1-184.

    Article  Google Scholar 

  54. 54. T. J. Rupert, J. C. Trenkle and C. A. Schuh, Acta Materialia 2011, vol. 59, pp. 1619-1631.

    Article  Google Scholar 

  55. 55. E. O. Hall, P Phys Soc B 1951, vol. 64, p. 747.

    Article  Google Scholar 

  56. 56. N. J. Petch, J Iron Steel I 1953, vol. 174, pp. 25-28.

    Google Scholar 

  57. 57. J. A. Knapp and D. M. Follstaedt, J Mater Res 2004, vol. 19, pp. 218-227.

    Article  Google Scholar 

  58. 58. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson and R. W. Armstrong, Scripta Metallurgica 1986, vol. 20, pp. 93-97.

    Article  Google Scholar 

  59. 59. A. M. El-Sherik, U. Erb, G. Palumbo and K. T. Aust, Scripta Metallurgica et Materialia 1992, vol. 27, pp. 1185-1188.

    Article  Google Scholar 

  60. 60. D. J. Abson and J. J. Jonas, Metal Science 1970, vol. 4, pp. 24-28.

    Article  Google Scholar 

  61. 61. S. Kobayashi, T. Yoshimura, S. Tsurekawa, T. Watanabe and J. Z. Cui, Mater. Trans. 2003, vol. 44, pp. 1469-1479.

    Article  Google Scholar 

  62. 62. A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet, Science 2003, vol. 300, pp. 1550-1552.

    Article  Google Scholar 

  63. 63. X. W. Zhou and H. N. G. Wadley, Acta Materialia 1999, vol. 47, pp. 1063-1078.

    Article  Google Scholar 

  64. 64. X. Zhang, O. Anderoglu, R. G. Hoagland and A. Misra, JOM 2008, vol. 60, pp. 75-78.

    Article  Google Scholar 

  65. 65. D. J. Siegel, Appl Phys Lett 2005, vol. 87, p. 121901.

    Article  Google Scholar 

  66. T. Lagrange, B. W. Reed, M. Wall, J. Mason, T. Barbee and M. Kumar, Appl Phys Lett 2013, 102: 011905

    Article  Google Scholar 

  67. 67. Z. Horita, D. J. Smith, M. Nemoto, R. Z. Valiev and T. G. Langdon, J Mater Res 1998, vol. 13, pp. 446-450.

    Article  Google Scholar 

  68. 68. K. Pantleon and M. A. J. Somers, Mater. Sci Eng. A. 2010, vol. 528, pp. 65-71.

    Article  Google Scholar 

  69. 69. S. Mahajan, C. S. Pande, M. A. Imam and B. B. Rath, Acta Materialia 1997, vol. 45, pp. 2633-2638.

    Article  Google Scholar 

  70. 70. H. Gleiter, Acta Metallurgica 1969, vol. 17, pp. 1421-1428.

    Article  Google Scholar 

  71. X. Liu, N.T. Nuhfer, A.P. Warren, K.R. Coffey, G.S. Rohrer, and K. Barmak, J Mater Res 2015, pp. 1–10.

  72. 72. C. A. Schuh, R. W. Minich and M. Kumar, Philos Mag 2003, vol. 83, pp. 711-726.

    Article  Google Scholar 

  73. 73. S. H. Kim, K. T. Aust, F. Gonzalez and G. Palumbo, Plat. Surf. Finish. 2004, vol. 91, pp. 68-70.

    Google Scholar 

  74. 74. G. Palumbo and K. T. Aust, Acta Metall. Mater. 1990, vol. 38, pp. 2343-2352.

    Article  Google Scholar 

  75. 75. Y. Zhao, I. C. Cheng, M. E. Kassner and A. M. Hodge, Acta Materialia 2014, vol. 67, pp. 181-188.

    Article  Google Scholar 

  76. 76. H. Zhao, L. Liu, J. Zhu, Y. Tang and W. Hu, Mater. Lett. 2007, vol. 61, pp. 1605-1608.

    Article  Google Scholar 

  77. 77. J. Vijayakumar and S. Mohan, Surf Eng 2011, vol. 27, pp. 32-36.

    Article  Google Scholar 

  78. 78. L. Y. Qin, J. S. Lian and Q. Jiang, Trans. Nonferrous Met. Soc. China 2010, vol. 20, pp. 82-89.

    Article  Google Scholar 

  79. 79. R. Mishra and R. Balasubramaniam, Corros Sci 2004, vol. 46, pp. 3019-3029.

    Article  Google Scholar 

  80. 80. C. Wen, G. Wen, Y. Qian and Q. Xinxin, Appl Surf Sci 2013, vol. 276, pp. 604-8.

    Article  Google Scholar 

  81. 81. M. Janecek, B. Hadzima, R. J. Hellmig and Y. Estrin, Kov. Mater.-Met. Mater. 2005, vol. 43, pp. 258-271.

    Google Scholar 

  82. B. Hadzima, M. Janecek, R.J. Hellmig, Y. Kutnyakova and Y. Estrin (2006) In: Z. Horita (ed) Nanomaterials by Severe Plastic Deformation. Trans Tech Publications Ltd: Zurich-Uetikon, pp 883-888.

    Google Scholar 

  83. M. Saremi and M. Abouie (2011) In: M. S. J. Hashmi, S. Mridha and S. Naher (ed) Advances in Materials and Processing Technologies Ii, Pts 1 and 2. Trans Tech Publications Ltd: Stafa-Zurich, pp 1519-1525.

    Google Scholar 

  84. 84. M. Saremi and M. Yeganeh, Micro Nano Lett. 2010, vol. 5, pp. 70-75.

    Article  Google Scholar 

  85. 85. X. X. Xu, et al., Mater. Lett. 2010, vol. 64, pp. 524-527.

    Article  Google Scholar 

  86. 86. G. Palumbo and U. Erb, MRS Bull. 1999, vol. 24, pp. 27-32.

    Google Scholar 

  87. 87. A. Vinogradov, T. Mimaki, S. Hashimoto and R. Valiev, Scripta Materialia 1999, vol. 41, pp. 319-326.

    Article  Google Scholar 

  88. 88. C. A. Schuh, K. Anderson and C. Orme, Surf Sci 2003, vol. 544, pp. 183-192.

    Article  Google Scholar 

  89. 89. C. Kollia and N. Spyrellis, Surf. Coat. Technol. 1993, vol. 57, pp. 71-75.

    Article  Google Scholar 

  90. 90. A. Q. Lü, Y. Zhang, Y. Li, G. Liu, Q. H. Zang and C. M. Liu, Acta Metallurgica Sinica (English Letters) 2006, vol. 19, pp. 183-189.

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support from the National Science Foundation through a CAREER Award No. DMR-1255305. This work was partly performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D.B.B. and M.K. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP# SCW0939. D.B.B. also acknowledges the support of the Livermore Graduate Scholar Program at Lawrence Livermore National Laboratory during part of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy J. Rupert.

Additional information

The submitted manuscript has been authored by a contractor of the U.S. Government under contract number DE-AC52-07NA27344. Accordingly the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.

Manuscript submitted May 26, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bober, D.B., Khalajhedayati, A., Kumar, M. et al. Grain Boundary Character Distributions in Nanocrystalline Metals Produced by Different Processing Routes. Metall Mater Trans A 47, 1389–1403 (2016). https://doi.org/10.1007/s11661-015-3274-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3274-9

Keywords

Navigation