Skip to main content

Advertisement

Log in

Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-temperature tensile and low-cycle fatigue tests were performed to assess the influence of micro-additions of Ti, V, and Zr on the improvement of the Al-7Si-1Cu-0.5Mg (wt pct) alloy in the as-cast condition. Addition of transition metals led to modification of microstructure where in addition to conventional phases present in the Al-7Si-1Cu-0.5Mg base, new thermally stable micro-sized Zr-Ti-V-rich phases Al21.4Si4.1Ti3.5VZr3.9, Al6.7Si1.2TiZr1.8, Al2.8Si3.8V1.6Zr, and Al5.1Si35.4Ti1.6Zr5.7Fe were formed. The tensile tests showed that with increasing test temperature from 298 K to 673 K (25 °C to 400 °C), the yield stress and tensile strength of the present studied alloy decreased from 161 to 84 MPa and from 261 to 102 MPa, respectively. Also, the studied alloy exhibited 18, 12, and 5 pct higher tensile strength than the alloy A356, 354 and existing Al-Si-Cu-Mg alloy modified with additions of Zr, Ti, and Ni, respectively. The fatigue life of the studied alloy was substantially longer than those of the reference alloys A356 and the same Al-7Si-1Cu-0.5Mg base with minor additions of V, Zr, and Ti in the T6 condition. Fractographic analysis after tensile tests revealed that at the lower temperature up to 473 K (200 °C), the cleavage-type brittle fracture for the precipitates and ductile fracture for the matrix were dominant while at higher temperature fully ductile-type fracture with debonding and pull-out of cracked particles was identified. It is believed that the intermetallic precipitates containing Zr, Ti, and V improve the alloy performance at increased temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Tucker: Met. Finish., 2013, vol. 111, pp. 23–25.

    Article  Google Scholar 

  2. Aluminum Promises Greater Fuel-Efficiency: Metallurgy, Mater. Today, 2002, vol. 5, p. 12.

  3. R. Tucker: Met. Finish., 2013, vol. 111, pp. 31–33.

    Article  Google Scholar 

  4. G. Sha, H. Möller, W.E. Stumpf, J.H. Xia and G. Goven: Acta Mater., 2012, vol. 60, pp. 692–701.

    Article  Google Scholar 

  5. M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M. Al–Ahmari and F.H. Samuel: Mater. Des., 2011, vol. 32, pp. 3900–3910.

    Article  Google Scholar 

  6. O. Elsebaie, A.M. Mohamed, A.M. Samuel and F.H. Samuel: Mater. Des., 2011, vol. 32, pp. 3205–3220.

    Article  Google Scholar 

  7. J. Hernandez–Sandoval, G.H. Garza–Elizondo, A.M. Samuel, S. Valtiierra and F.H. Samuel: Mater. Des., 2014, vol. 58, pp. 89–101.

    Article  Google Scholar 

  8. Y. Sui, Q. Wang, G. Wang and T. Liu: J. Alloys Compd., 2015, vol. 622, pp. 572–579.

    Article  Google Scholar 

  9. S.K. Chaudhury and D. Apelian: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 763–778.

    Article  Google Scholar 

  10. P. Sepehband, R. Mahmudi and F. Khomamizadeh: Scripta Mater., 2005, vol. 52, pp. 253–257.

    Article  Google Scholar 

  11. R. Mahmudi, P. Sepehrband and H.M. Ghasemi: Mater. Lett., 2006, vol. 60, pp. 2606–2610.

    Article  Google Scholar 

  12. W. Kasprzak, D. Emadi, M. Sahoo and M. Aniolek: Mater. Sci. Forum., 2009, vol. 618–619, pp. 595–600.

    Article  Google Scholar 

  13. W. Kasprzak, D.L. Chen and S.K. Shaha: J. Mater. Eng. Perform., 2013, vol. 22, pp. 1838–1847.

    Article  Google Scholar 

  14. W. Kasprzak, B.S. Amirkhiz and M. Niewczas: J. Alloys Compd., 2014, vol. 595, pp. 67–79.

    Article  Google Scholar 

  15. S.K. Shaha, F. Czerwinski, W. Kasprzak and D.L. Chen: J. Alloys Compd., 2014, vol. 593, pp. 290–299.

    Article  Google Scholar 

  16. T. Gao, X. Zhu, Q. Sun and X. Liu: J. Alloys Compd., 2013, vol. 567, pp. 82–88.

    Article  Google Scholar 

  17. S.K. Shaha, F. Czerwinski, W. Kasprzak and D.L. Chen: Mater. Des., 2014, vol. 59, pp. 352–358.

    Article  Google Scholar 

  18. K.L. Sahoo and B.N. Pathak: J. Mater. Process. Technol., 2009, vol. 209, pp. 798–804.

    Article  Google Scholar 

  19. X.–G. Chen and M. Fortier: J. Mater. Process. Technol., 2010, vol. 210, pp. 1780–1786.

    Article  Google Scholar 

  20. C. Booth–Morrison, Z. Mao, M. Diaz, D.C. Dunand, C. Wolverton and D.N. Seidman: Acta Mater., 2012, vol. 60, pp. 4740–4752.

    Article  Google Scholar 

  21. Y. Li, Y. Yang, Y. Wu, L. Wang and X. Liu: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7132–7137.

    Article  Google Scholar 

  22. Y. Li, Y. Yang, Y. Wu, Z. Wei and X. Liu: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4427–4430.

    Article  Google Scholar 

  23. J. H. Hollomon: Trans. AIME, 1945, vol. 162, pp. 268–290.

    Google Scholar 

  24. Y. Meng, J. Cui, Z. Zhao and Y. Zuo: J. Alloys Compd., 2013, vol. 573, pp. 102–111.

    Article  Google Scholar 

  25. T.V. Atamanenko, D.G. Eskin, M. Sluiter and L. Katgerman: J. Alloys Compd., 2011, vol. 509, pp. 57–60.

    Article  Google Scholar 

  26. T. Gao and X. Liu: J. Mater. Sci. Technol., 2013, vol. 29, pp. 291–296.

    Article  Google Scholar 

  27. A.M. Mohamed, F.H. Samuel and S. Al–kahtani: Mater. Sci. Eng. A, 2013, vol. 577, pp. 64–72.

    Article  Google Scholar 

  28. H.A. Elhadari, H.A. Patel, D.L. Chen and W. Kasprzak: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8128–8138.

    Article  Google Scholar 

  29. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D.L. Chen: Int. J. Fatigue, 2015, vol. 70, p. 383–394.

    Article  Google Scholar 

  30. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman and D.L. Chen: Thermochim. Acta, 2014, vol. 595, pp. 11–16.

    Article  Google Scholar 

  31. S.K. Shaha, F. Czerwinski, W. Kasprzak, J. Friedman, and D.L. Chen: Metall. Mater. Sci. Eng. A, unpublished research, 2015.

  32. G.E. Dieter: Mechanical Metallurgy, SI Metric Edition, London, UK: McGraw–Hill Book Company, 1988, pp. 283–84.

  33. L. Hurtalová, E. Tillová and M. Chalupová: Arch. Mech. Eng., 2012, vol. 59, pp. 385–396.

    Google Scholar 

  34. L. Lasa and J.M. Rodriguez-Ibabe: J. Mater. Sci., 2004, vol. 39, pp. 1343–1355.

    Article  Google Scholar 

  35. M.F. Ibrahim, E. Samuel, A.M. Samuel, A.M. Al–Ahmari and F.H. Samuel: Mater. Des., 2011, vol. 32, pp. 2130–2142.

    Article  Google Scholar 

  36. K.L. Fan, G.Q. He, X.S. Liu, B. Liu, M. She, Y.L. Yuan, Y. Yang and Q. Lu: Mater. Sci. Eng. A, 2013, vol. 586, pp. 78–85.

    Article  Google Scholar 

  37. E.-S.Y. El-Kady, T.S. Mahmoud and M.A.-A. Sayed: Mater Sci Appl., 2011, vol. 2, pp. 390–398.

    Google Scholar 

  38. W.F. Hosford: in Mechanical Behavior of Materials, Cambridge University Press, New York, 2005, pp. 279–307.

  39. M.S. Song, Y.Y. Kong, M.W. Ran and Y.C. She: Int. J. Fatigue, 2013, vol. 33, pp. 1600–1607.

    Article  Google Scholar 

  40. A.R. Emami, S. Begum, D.L. Chen, T. Skszek, X.P. Niu, Y. Zhang and F. Gabbianelli: Mater. Sci. Eng. A, 2009, vol. 516, pp. 31–41.

    Article  Google Scholar 

  41. M. Azadi and M.M. Shirazabad: Mater. Des., 2013, vol. 45, pp. 279–285.

    Article  Google Scholar 

  42. S.K. Shaha, F. Czerwinski, D.L. Chen and W. Kasprzak: Mater. Sci. Technol., 2015, vol. 31, pp. 63–72.

    Article  Google Scholar 

  43. H.R. Ammar, A.M. Samuel and F.H. Samuel: Int. J. Fatigue, 2008, vol. 30, pp. 1024–1035.

    Article  Google Scholar 

  44. Q.G. Wang, P.N. Crepeau, C.J. Davidson and J.R. Griffiths: Metall. Mater. Trans. B, 2006, vol. 37, pp. 887–895.

    Article  Google Scholar 

  45. J.Z. Zhou, S. Huang, J. Sheng, J.Z. Lu, C.D. Wang, K.M. Chen, H.Y. Ruan and H.S. Chen: Mater. Sci. Eng. A, 2012, vol. 539, pp. 360–368.

    Article  Google Scholar 

  46. J. Schäfer and K. Albe: Scripta. Mater., 2012, vol. 66, pp. 315–317.

    Article  Google Scholar 

  47. W.A. Curtin: Scripta Mater., 2010, vol. 63, pp. 917–920.

    Article  Google Scholar 

  48. C.V. Singh, A.J. Mateos and D.H. Warner: Scripta Mater., 2011, vol. 64, pp. 398–401.

    Article  Google Scholar 

  49. N.F. Mott: Nature, 1955, vol. 175, pp. 365–367.

    Article  Google Scholar 

  50. P. Cavaliere and P.P. De Marco: Mater. Sci. Eng. A, 2007, vol. 462, pp. 206–210.

    Article  Google Scholar 

  51. S. Spigarelli, M. Cabibbo, E. Evangelista and J. Bidulská: J. Mater. Sci., 2003, vol. 38, pp. 81–88.

    Article  Google Scholar 

  52. Q.G. Wang: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2707–2718.

    Article  Google Scholar 

  53. C.-Y. Jeong: Mater. Trans., 2012, vol. 53, pp. 234–239.

    Article  Google Scholar 

  54. Q.G. Wang and C.H. Caceres: Mater. Sci. Eng. A, 1997, vol. 234–236, pp. 106–109.

    Article  Google Scholar 

  55. R.J. Asaro and Y. Kulkarni: Scripta Mater., 2008, vol. 58, pp. 389–392.

    Article  Google Scholar 

  56. P.A. Rometsch and G.B. Schaffer: Mater. Sci. Eng. A, 2002, vol. 325, pp. 424–434.

    Article  Google Scholar 

  57. G. Zhang, J. Zhang, B. Li and W. Cai: Mater. Sci. Eng. A, 2013, vol. 561, pp. 23–33.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support of the ecoENERGY Innovation Initiative ecoEII of Natural Resources Canada at CanmetMATERIALS. One of the authors (D.L. Chen) is grateful for the financial support by the Natural Sciences and Engineering Research Council of Canada (NSERC), PREA, NSERC-DAS Award, CFI, and RRC program. The authors would also like to thank Q. Li, A. Machin, J. Amankrah, and R. Churaman for their assistance in the experiments. The authors also thank Professor S. Bhole for the helpful discussion as well as P. Newcombe, G. Birsan, H. Webster, D. McFarlan, F. Benkel, M. Thomas, and D. Saleh from CanmetMATERIALS for casting experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Czerwinski.

Additional information

©Published with permission of Her Majesty the Queen in Right of Canada pertains to F. Czerwinski and W. Kasprzak.

Manuscript submitted December 22, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaha, S.K., Czerwinski, F., Kasprzak, W. et al. Improving High-Temperature Tensile and Low-Cycle Fatigue Behavior of Al-Si-Cu-Mg Alloys Through Micro-additions of Ti, V, and Zr. Metall Mater Trans A 46, 3063–3078 (2015). https://doi.org/10.1007/s11661-015-2880-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2880-x

Keywords

Navigation