Skip to main content
Log in

Five-Parameter Grain Boundary Inclination Recovery with EBSD and Interaction Volume Models

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

While electron backscatter diffraction (EBSD) patterns are often used to present two-dimensional information about a material microstructure, they are in fact a product of the three-dimensional electron interaction volume. Consequently, 3D spatial information exists in EBSD images, which is generally not accessed. Specifically, the inclination of the grain boundary plane may be observed in EBSD patterns taken near grain boundaries. If, at the same time, the shape of an electron interaction volume in the material is known, a grain boundary plane normal direction can be obtained from a sequence of EBSD images taken stepwise in a line crossing the grain boundary. Here, these two principles are used for demonstrating the determination of grain boundary normal vectors from EBSD images. Coherent twin boundaries and focused ion beam serial scan data are used for validation. Results indicate a mean error for this approach of 3 deg with a standard deviation of 3.8 deg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.P. Sutton and R.W. Balluffi: Interfaces in Crystalline Materials, Oxford University Press, Oxford, 1995.

    Google Scholar 

  2. T.Watanabe: in Boundaries and Interfaces in Materials: The David A. Smith Symposium, R.C. Pond, W.A.T. Clark, and A.H. King, eds., The Minerals, Metals and Materials Society, Warrendale, PA, 1998, pp. 19–29.

  3. E.M. Lehockey, G. Palumbo, and P. Lin: in Boundaries and Interfaces in Materials: The David A. Smith Symposium, R.C. Pond, W.A.T. Clark, and A.H. King, eds., The Minerals, Metals and Materials Society, Warrendale, PA, 1998, pp. 45–50.

  4. Randle V.: Acta Metall. Mater. 1994;42:1769–84.

    Article  Google Scholar 

  5. Kim C.-S., Rollett A.D., Rohrer G.S.: Scripta Mater. 2006;54:1005–09.

    Article  Google Scholar 

  6. Saylor D.M., Morawiec A., Rohrer G.S.: Acta Mater., 2003;51:3663–74.

    Article  Google Scholar 

  7. Saylor D.M., El-Dasher B.S., Adams B.L., Rohrer G.S.: Metall. Mater. Trans. A, 2004;35:1981–89.

    Article  Google Scholar 

  8. King A., Herbig M., Ludwig W., Reischig P., Lauridsen E.M., Marrow T., Buffière J.Y.: Nucl. Instrum. Methods Phys. Res. Sect. B 2010;268:291–96.

    Article  Google Scholar 

  9. Chen D., Kuo J.-C.: Microsc. Microanal. 2013;19:4–7.

    Article  Google Scholar 

  10. Deal A., Tao X., Eades A.:. Surf. Interface Anal.. 2005;37:1017–20.

    Article  Google Scholar 

  11. Joy D.C. Monte Carlo Modeling for Electron Microscopy and Microanalysis. New York: Oxford University Press, 1995.

    Google Scholar 

  12. Drouin D., Couture A.R., Joly D., Tastet X., Aimez V., Gauvin R.: Scanning 2007;29:92–101.

    Article  Google Scholar 

  13. N.W.M. Ritchie: DTSA-II. Gaithersburg, MD, 2011. http://www.cstl.nist.gov/div837/837.02/epq/dtsa2/index.html.

  14. J. Kacher, B.L. Adams, D. Fullwood, C. Landon (2008) In Applications of Texture Analysis, John Wiley & Sons, Inc. 2008, pp. 147–54.

  15. Joy D.C.: Scanning Microsc. 1991;5:329–37.

    Google Scholar 

  16. Werner W.S.M.: Surf. Interface Anal.., 2001;31:141–76.

    Article  Google Scholar 

  17. Deal A., Hooghan T., Eades A.: Ultramicroscopy 2008;108:116–25.

    Article  Google Scholar 

  18. Winkelmann A.: J. Microsc. 2010;239:32–45.

    Article  Google Scholar 

  19. Ren S.X., Kenik E.A., Alexander K.B., Goyal A.: Microsc. Microanal.. 1998;4:15–22.

    Article  Google Scholar 

  20. Kacher J., Landon C., Adams B.L., Fullwood D.: Ultramicroscopy 2009;109:1148–56.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge funding provided by the Army Research Office (WF911NF-08-1-0350) under Dr. David Stepp, Program Director. Caroline Sorensen was funded by REU supplements to NSF grants CMMI-0928923 and 1235365.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. Fullwood.

Additional information

Manuscript submitted May 29, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorensen, C., Basinger, J.A., Nowell, M.M. et al. Five-Parameter Grain Boundary Inclination Recovery with EBSD and Interaction Volume Models. Metall Mater Trans A 45, 4165–4172 (2014). https://doi.org/10.1007/s11661-014-2345-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2345-7

Keywords

Navigation