Skip to main content
Log in

Numerical Simulation of Transport Phenomena for a Double-Layer Laser Powder Deposition of Single-Crystal Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A turbine blade made of single-crystal superalloys has been commonly used in gas turbine and aero engines. As an effective repair technology, laser powder deposition has been implemented to restore the worn turbine blade tips with a near-net shape capability and highly controllable solidified microstructure. Successful blade repair technology for single-crystal alloys requires a continuous epitaxial grain growth in the same direction of the crystalline orientation of the substrate material to the newly deposited layers. This work presents a three-dimensional numerical model to simulate the transport phenomena for a multilayer coaxial laser powder deposition process. Nickel-based single-crystal superalloy Rene N5 powder is deposited on a directional solidified substrate made of nickel-based directional-solidified alloy GTD 111 to verify the simulation results. The effects of processing parameters including laser power, scanning speed, and powder feeding rate on the resultant temperature field, fluid velocity field, molten pool geometric sizes, and the successive layer remelting ratios are studied. Numerical simulation results show that the maximum temperature of molten pool increases over layers due to the reduced heat dissipation capacity of the deposited geometry, which results in an increased molten pool size and fluid flow velocity at the successive deposited layer. The deposited bead geometry agrees well between the simulation and the experimental results. A large part of the first deposition layer, up to 85 pct of bead height, can be remelted during the deposition of the second layer. The increase of scanning speed decreases the ratio of G/V (temperature gradient/solidification velocity), leading to an increased height ratio of the misoriented grain near the top surface of the previous deposited layer. It is shown that the processing parameters used in the simulation and experiment can produce a remelting ratio R larger than the misoriented grain height ratio S, which enables remelting of all the misoriented grains and guarantees a continuous growth of the substrate directional-solidified crystalline orientation during the multilayer deposition of single-crystal alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, U.K., 2006.

    Book  Google Scholar 

  2. M. Gäumann: École Polytechnique Fédérale De Lausanne, Lausanne, Switzerland, 1999.

    Google Scholar 

  3. Y. Kathuria: Surf. Coat. Technol., 2000, vol. 132, pp. 262-9.

    Article  Google Scholar 

  4. H. Wang and Z. Hu: J. Mater. Sci. Lett., 1994, vol. 13, pp. 1400-2.

    Article  Google Scholar 

  5. M. Gäumann, C. Bezencon, P. Canalis, and W. Kurz: Acta Mater., 2001, vol. 49, pp. 1051-62.

    Article  Google Scholar 

  6. M. Gäumann, S. Henry, F. Cleton, J.D. Wagniere, and W. Kurz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 232-41.

    Article  Google Scholar 

  7. W. Liu and J. DuPont: Acta Mater., 2004, vol. 52, pp. 4833-47.

    Google Scholar 

  8. W. Liu and J. DuPont: Acta Mater., 2005, vol. 53, pp. 1545-58.

    Article  Google Scholar 

  9. J.W. Park, S. Babu, J. Vitek, E. Kenik, and S. David: J. Appl. Phys., 2003, vol. 94, pp. 4203-9.

    Article  Google Scholar 

  10. J. Vitek: Acta Mater., 2005, vol. 53, pp. 53-67.

    Article  Google Scholar 

  11. T. Anderson, J. DuPont, and T. DebRoy: Acta Mater., 2010, vol. 58, pp. 1441-54.

    Article  Google Scholar 

  12. E. Toyserkani, A. Khajepour, and S. Corbin: J. Laser Appl., 2003, vol. 15, p. 153.

    Article  Google Scholar 

  13. H. Qi, J. Mazumder, and H. Ki: J. Appl. Phys., 2006, vol. 100, pp. 024903-11.

    Article  Google Scholar 

  14. X. He and J. Mazumder: J. Appl. Phys., 2007, vol. 101, p. 9.

    Google Scholar 

  15. L. Han, K. Phatak, and F. Liou: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1139-50.

    Article  Google Scholar 

  16. P. Peyre, P. Aubry, P. Fabbro, P. Neveu, and A. Longuet: J. Appl. Phys., 2008, vol. 41, p. 10.

    Google Scholar 

  17. S. Wen and Y.C. Shin: J. Appl. Phys., 2010, vol. 108, pp. 044908-9.

    Article  Google Scholar 

  18. X. He, G. Yu, and J. Mazumder: J. Appl. Phys., 2010, vol. 43, p. 9.

    Google Scholar 

  19. D.J. Lim, H. Ki, and J. Mazumder: J. Phys. D: Appl. Phys., 2006, vol. 39, p. 2624.

    Article  Google Scholar 

  20. S. Osher and R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces, Springer, New York, NY, 2003.

    Book  Google Scholar 

  21. J. Vitek, S. David, and L. Boatner: Sci. Tech. Weld. Join., 1997, vol. 2, pp. 109-18.

    Article  Google Scholar 

  22. R. Unocic and J. DuPont: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 143-52.

    Article  Google Scholar 

  23. W. Liu and J. DuPont: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3397-406.

    Article  Google Scholar 

  24. M. Alimardani, E. Toyserkani, and J.P. Huissoon: Optic. Laser. Eng., 2007, vol. 45, pp. 1115-30.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Grant No. 51175338) and Pujiang Talent Program (Grant No. 12PJ1404400). The authors would also like to thank Yanming Li and Henry Peng from GE Global Research Center for their support in acquiring materials and their assistance in obtaining the experimental results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Qi.

Additional information

Manuscript submitted July 12, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Z., Qi, H. Numerical Simulation of Transport Phenomena for a Double-Layer Laser Powder Deposition of Single-Crystal Superalloy. Metall Mater Trans A 45, 1903–1915 (2014). https://doi.org/10.1007/s11661-013-2178-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2178-9

Keywords

Navigation