Skip to main content
Log in

Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behavior of Type 316L(N) Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Tensile tests were performed at strain rates ranging from 3.16 × 10−5 to 3.16 × 10−3 s−1 over the temperatures ranging from 300 K to 1123 K (27 °C to 850 °C) to examine the effects of temperature and strain rate on tensile deformation and fracture behavior of nitrogen-alloyed low carbon grade type 316L(N) austenitic stainless steel. The variations of flow stress/strength values, work hardening rate, and tensile ductility with respect to temperature exhibited distinct three temperature regimes. The steel exhibited distinct low- and high-temperature serrated flow regimes and anomalous variations in terms of plateaus/peaks in flow stress/strength values and work hardening rate, negative strain rate sensitivity, and ductility minima at intermediate temperatures. The fracture mode remained transgranular. At high temperatures, the dominance of dynamic recovery is reflected in the rapid decrease in flow stress/strength values, work hardening rate, and increase in ductility with the increasing temperature and the decreasing strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. S.L. Mannan, S.C. Chetal, B. Raj, and S.B. Bhoje: Trans. Indian Inst. Met., 2003, vol. 56, pp. 155–78.

    Google Scholar 

  2. L.A. Norstrom: Met. Sci., 1997, vol. 11, pp. 208–12.

    Google Scholar 

  3. W.S. Ryu, D.W. Kim, W.G. Kim, and H.H. Kuk: Trans. 15th International Conference Structural Mechanics in Reactor Technology (SMIRT-15), Seoul, Korea, 1999, pp. X-275–82.

  4. V. Ganesan, M.D. Mathew, and K.B.S. Rao: Mater. Sci. Technol., 2009, vol. 25, pp. 614–18.

    Article  Google Scholar 

  5. M.D. Mathew, K. Laha, and V. Ganeshan: Mater. Sci. Eng. A, 1012, vol. 535, pp. 76–83.

    Article  Google Scholar 

  6. S. Degallix, J. Foct, and A. Hendry: Mater. Sci. Technol., 1986, vol. 2, pp. 946–50.

    Article  Google Scholar 

  7. P. Mullnen, C. Solenthaler, P. Uggowietzer, and M.O. Spiedel: Mater. Sci. Eng. A, 1993, vol. 164, pp. 164–69.

    Article  Google Scholar 

  8. J. Rawer, and M. Grcyicic: Mater. Sci. Eng. A, 1996, vol. 207, pp. 188–94.

    Article  Google Scholar 

  9. J.W. Simmons: Mater. Sci. Eng. A, 1996, vol. 207, pp. 159–69.

    Article  Google Scholar 

  10. D.J. Michel, J. Moteff, and A.J. Lovell: Acta Metall., 1973, vol. 21, pp. 1269–77.

    Article  Google Scholar 

  11. S.L. Mannan, K.G. Samuel, and P. Rodriguez: Proceeding of 6th International Conference on Strength of Metals and Alloys, Melbourne, 1982, R.C Gifkins, ed., Pergamon Press, Oxford, 1982, vol. 2, pp. 637–42.

  12. P. Rodriguez: Bull. Mater. Sci., 1984, vol. 6, pp. 653–63.

    Article  Google Scholar 

  13. B.P. Kashyap, K. McTaggart, and K. Tangri: Philos. Mag., 1988, vol. 57, pp. 97–114.

    Article  Google Scholar 

  14. S.L. Mannan, K.G. Samuel, and P. Rodriguez: Mater. Sci. Eng., 1984–1985, vol. 68, pp. 143–49.

  15. S.L. Mannan, K.G. Samuel, and P. Rodriguez: Trans. Indian Inst. Met., 1983, vol. 36, pp. 313–20.

    Google Scholar 

  16. K.G. Samuel, S.L. Mannan, and P. Rodriguez: Acta Metall., 1988, vol. 36, pp. 2323–27.

    Article  Google Scholar 

  17. S. Venkadesan, C. Phaniraj, P.V. Sivaprasad, and P. Rodriguez: Acta Metall., 1992, vol. 40, pp. 569–80.

    Article  Google Scholar 

  18. D.W. Kim. W.S. Ryu, J.H. Hong, and S.K. Choi: J. Mater. Sci., 1998, vol. 33, pp. 675–79.

    Article  Google Scholar 

  19. S.G. Hong, and S.B. Lee: Int. J. Fatigue, 2004, vol. 26, pp. 899–910.

    Article  Google Scholar 

  20. K.G. Samuel, S.K. Ray, and G. Sasikala: J. Nucl. Mater., 2006, vol. 355, pp. 30–7.

    Article  Google Scholar 

  21. Design and Construction Rules for Mechanical Components of FBR Nuclear Islands, RCC-MR, Section 1, Subsection Z, Appendix A3.18S.22, 2002.

  22. E. Pink and A. Grinberg: Mater. Sci. Eng., 1981, vol. 51, pp. 1–8.

    Article  Google Scholar 

  23. P.G. Mc Cormick: Acta Metall., 1972, vol. 20, pp. 351–54.

  24. A.W. Sleeswyk: Acta Metall., 1958, vol. 6, pp. 598–603.

    Article  Google Scholar 

  25. R.D. Naybour: Acta Metall., 1965, vol. 13, pp. 1197–207.

    Article  Google Scholar 

  26. P.J. Worthington and B.J. Brindley: Philos. Mag., 1969, vol. 19, pp. 1175–178.

    Article  Google Scholar 

  27. C.F. Jenkins and G.V. Smith: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 2149–156.

    Google Scholar 

  28. L.H. de Almeida, I. Le May, and S.N. Monteiro: Proceeding of 7th International Conference Strength of Metals and Alloys (ICSMA 7), Montreal, Canada, H.J. McQueen et al., eds., Pergamon Press, Oxford, 1985, pp. 337–42.

  29. L.H. de Almeida, I. Le May, and S.N. Monteiro: Scripta Metall., 1985, vol. 19, pp. 1451–454.

  30. L.H. de Almeida, P.R.O. Emygdio, and S.N. Monteiro: Scripta Metall., 1994, vol. 31, pp. 505–10.

  31. K.S.B. Rose, and S.G. Glover: Acta Metall., 1966, vol. 14, pp. 1505–516.

    Article  Google Scholar 

  32. U. Ehrnsten, M. Ivanchenko, V. Nevdacha, Y. Yagodzinskyy, A. Toivonen, and H. Hanninen: Proceedings of 12th International Conference Environment Degradation of Materials in Nuclear Power SystemsWater Reactors, T.R. Allen et al., eds, TMS, Warrendale, PA, 2005, pp. 1475–482.

  33. V.G. Gavriljunk, and H. Berns, High Nitrogen Steels, Springer, Berlin, 1999, pp. 135–83.

    Google Scholar 

  34. K. Oda, N. Kondo, and K. Shibata: ISIJ Int., 1990, vol. 30, pp. 625–31.

    Article  Google Scholar 

  35. B.K. Choudhary, K.B.S. Rao, S.L. Mannan, and B.P. Kashyap: Mater. Sci. Technol., 1999, vol. 15, pp. 791–97.

    Article  Google Scholar 

  36. B.K. Choudhary, V.S. Srinvasan, and M.D. Mathew: Mater. High. Temp., 2011, vol. 28, pp. 155–61.

    Article  Google Scholar 

  37. A. Van Den Beukel: Phys. Status Solidi A, 1975, vol. 30, pp. 197–206.

  38. R.W. Hayes: Acta Metall., 1983, vol. 31, pp. 365–71.

    Article  Google Scholar 

  39. R.W. Hayes, and W.C. Hayes: Acta Metall., 1982, vol. 30, pp. 1295–301.

    Article  Google Scholar 

  40. R.W. Hayes, and W.C. Hayes: Acta Metall., 1984, vol. 32, pp. 259–67.

    Article  Google Scholar 

  41. W. Charnock: Philos. Mag., 1961, vol. 20, pp. 427–32.

    Article  Google Scholar 

  42. B.K. Choudhary, E.I. Samuel, K.B.S. Rao, and S.L. Mannan: Mater. Sci. Technol., 17 (2001) 223–31.

    Article  Google Scholar 

  43. E.I. Samuel, B.K. Choudhary, and K.B.S. Rao: Scripta Metall., 2002, vol. 46, pp. 507–12.

  44. X. Feaugas: Acta Mater., 1999, vol. 47, pp. 3617–32.

    Article  Google Scholar 

  45. B.P. Kashyap, and K. Tangri: Acta Mater., 1987, vol. 45, pp. 2383–85.

    Article  Google Scholar 

  46. J.G. Morris: Mater. Sci. Eng., 1974, vol. 13, pp. 101–108.

    Article  Google Scholar 

  47. S.L. Mannan: Ph.D. Thesis, Indian Institute of Science, Bangalore, 1981.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Choudhary.

Additional information

Manuscript submitted July 13, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choudhary, B.K. Influence of Strain Rate and Temperature on Tensile Deformation and Fracture Behavior of Type 316L(N) Austenitic Stainless Steel. Metall Mater Trans A 45, 302–316 (2014). https://doi.org/10.1007/s11661-013-1978-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1978-2

Keywords

Navigation