Skip to main content
Log in

The Microstructural, Textural, and Mechanical Properties of Extruded and Equal Channel Angularly Pressed Mg-Li-Zn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural and textural evolution of the Mg-6Li-1Zn (LZ61), Mg-8Li-1Zn (LZ81), and Mg-12Li-1Zn (LZ121) alloys were investigated in the as-extruded condition and after being equal channel angularly pressed (ECAPed) for one, two, and four passes. The shear punch testing technique was employed to evaluate the room-temperature mechanical properties of the extruded and ECAPed materials. Microstructural analysis revealed that the grain refinement in both LZ61 and LZ121 alloys could be achieved after multipass ECAP through the continuous dynamic recovery and recrystallization process. For the LZ81 alloy, however, the occurrence of Li loss in the four passes of ECAP condition partly offsets the grain refining effect of the ECAP process by increasing grain size and volume fraction of the α phase. Textural studies in both LZ61 and LZ81 alloys indicated that the developed fiber texture after extrusion could be replaced by a typical ECAP texture, where the basal planes are mainly inclined about 45 deg to the extrusion axis. The increased volume fraction of the β phase in LZ81 significantly affected the α-phase texture by decreasing the intensity of the maximum orientations of the basal and prismatic planes in all deformation conditions, compared with the LZ61 alloy. It was also observed that the abnormal grain growth might be promoted by the strong texture developed in the extruded LZ121 alloy. This texture became more randomized when the number of ECAP passes increased. The SPT results showed that the shear yield stress, ultimate shear strength and normalized displacement in all studied alloys were improved through the grain refinement strengthening caused by ECAP. It was also established that increasing Li content decreased the shear strength and enhanced the shear elongation in all deformation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. MAGREX 36 is a trade mark of Foseco, Staffordshire, United Kingdom.

References

  1. I.J. Polmear: Light Alloys, 2nd ed., Chapman and Hall, Inc., New York, 1989, pp. 170–88.

    Google Scholar 

  2. B.L. Mordike and T. Ebert: Mater. Sci. Eng., 2001, vol. A302, pp. 37–45.

    CAS  Google Scholar 

  3. S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng., 2009, vol. A526, pp. 22–30.

    CAS  Google Scholar 

  4. K. Matsubara, Y. Miyahara, Z. Horita, and T.G. Langdon: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1735–44.

    Article  CAS  Google Scholar 

  5. H. Haferkamp, R. Boehm, U. Holzkamp, C. Jaschik, V. Kaese, and M. Miemeyer: Mater. Trans., 2001, vol. 42, pp. 1160–66.

    Article  CAS  Google Scholar 

  6. H. Takuda, H. Matsusaka, S. Kikuchi, and K. Kubota: J. Mater. Sci., 2002, vol. 37, pp. 51–57.

    Article  CAS  Google Scholar 

  7. A.A. Nayeb-Hashemi, J.B. Clark, and A.D. Pelton: Phases Diagrams of Binary Magnesium Alloys, ASM International, Materials Park, OH, 1998, p. 184.

    Google Scholar 

  8. Y. Miyahara, K. Matsubara, Z. Horita, and T.G. Langdon: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1705–11.

    Article  CAS  Google Scholar 

  9. Y. Radi and R. Mahmudi: Mater. Sci. Eng., 2010, vol. A527, pp. 2764–71.

    CAS  Google Scholar 

  10. R. Valiev and T.G. Langdon: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2942–51.

    Article  Google Scholar 

  11. S.A. Torbati-Sarraf and R. Mahmudi: Mater. Sci. Eng., 2010, vol. A527, pp. 3515–20.

    CAS  Google Scholar 

  12. Z. Horita, T. Fujinami, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 691–701.

    Article  CAS  Google Scholar 

  13. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A398, pp. 66–76.

    CAS  Google Scholar 

  14. L. Wu, G.M. Stoica, H.H. Liao, S.R. Agnew, E.A. Payzant, G. Wang, D.E. Fielden, L. Chen, and P.K. Liaw: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2283–89.

    Article  CAS  Google Scholar 

  15. Z. Horita, K. Matsubara, K. Makii, and T.G. Langdon: Scripta Mater., 2002, vol. 47, pp. 255–60.

    Article  CAS  Google Scholar 

  16. K. Matsubara, Y. Miyahara, Z. Horita, and T.G. Langdon: Acta Mater., 2003, vol. 51, pp. 3073–84.

    Article  CAS  Google Scholar 

  17. T. Mukai, M. Yamanoi, H. Watanabe, and K. Higashi: Scripta Mater., 2001, vol. 45, pp. 89–94.

    Article  CAS  Google Scholar 

  18. Z. Zúberová, L. Kunz, T.T. Lamark, Y. Estrin, and M. Janeček: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1934–40.

    Article  Google Scholar 

  19. S.M. Masoudpanah and R. Mahmudi: Mater. Sci. Eng., 2010, vol. A527, pp. 3685–89.

    CAS  Google Scholar 

  20. R.B. Figueiredo and T.G. Langdon: J. Mater. Sci., 2010, vol. 45, pp. 4827–36.

    Article  CAS  Google Scholar 

  21. T. Liu, Y.D. Wang, S.D. Wu, R.L. Peng, C.X. Huang, C.B. Jiang, and S.X. Li: Scripta Mater., 2004, vol. 51, pp. 1057–61.

    Article  CAS  Google Scholar 

  22. T.C. Chang, J.Y. Wang, C.L. Chu, and S. Lee: Mater. Lett., 2006, vol. 60, 3272-76.

    Article  CAS  Google Scholar 

  23. F. Kabirian and R. Mahmudi: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 3488–98.

    Article  Google Scholar 

  24. M. Keyvani, R. Mahmudi, and G. Nayyeri: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1990–2003.

    Article  Google Scholar 

  25. G. Nayyeri, R. Mahmudi, and F. Salehi: Mater. Sci. Eng., 2010, vol. A527, pp. 5353–59.

    CAS  Google Scholar 

  26. M. Karami and R. Mahmudi: Mater. Lett., 2012, vol. 81, 235-38.

    Article  CAS  Google Scholar 

  27. R. Alizadeh and R. Mahmudi: Mater. Sci. Eng., 2010, vol. A527, pp. 3975–83.

    CAS  Google Scholar 

  28. S.M. Masoudpanah and R. Mahmudi: Mater. Des., 2010, vol. 31, pp. 3512–17.

    Article  CAS  Google Scholar 

  29. R.K. Guduru, A.V. Nagasekhar, R.O. Scattergood, C.C. Koch, and K.L. Murty: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1477–83.

    Article  CAS  Google Scholar 

  30. G.L. Hankin, M.B. Toloczko, K.I. Jhonson, M.A. Khaleel, M.L. Hamilton, F.A. Garner, R.W. Davies, and R.J. Faulkner: ASTM STP 1366, 2000, pp. 1018–28.

    Google Scholar 

  31. K. Xia, J.T. Wang, X. Wu, G. Chen, and M. Gurvan: Mater. Sci. Eng., 2005, vols. A410–411, pp. 324–27.

    Google Scholar 

  32. C.W. Su, L. Lu, and M.O. Lai: Mater. Sci. Eng., 2006, vol. A434, pp. 227–36.

    CAS  Google Scholar 

  33. F.R. Cao, H. Ding, Y.L. Li, G. Zhou, and J.Z. Cui: Mater. Sci. Eng., 2010, vol. A527, pp. 2335–41.

    CAS  Google Scholar 

  34. A.B. Ma, Y. Nishida, N. Saito, I. Shigematsu, and S.W. Lim: Mater. Sci. Technol., 2003, vol. 19, pp. 1642–47.

    Article  CAS  Google Scholar 

  35. W. Fujitani, K. Higashi, N. Furushiro, and Y. Umakoshi: J. Jpn. Inst. Light Met., 1995, vol. 45, pp. 333–38.

    Article  CAS  Google Scholar 

  36. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, U.K., 2004.

    Google Scholar 

  37. S.X. Ding, C.P. Chang, and P.W. Kao: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 415–25.

    Article  CAS  Google Scholar 

  38. H.K. Kim and W.J. Kim: Mater. Sci. Eng., 2004, vol. A385, pp. 300–08.

    CAS  Google Scholar 

  39. H. Jazaeri and F.J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–62.

    Article  CAS  Google Scholar 

  40. S. Rajasekhara, P.J. Ferreira, L.P. Karjalainen, and A. Kyröläinen: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1202–10.

    Article  CAS  Google Scholar 

  41. S.R. Agnew, J.A. Horton, T.M. Lillo, and D.W. Brown: Scripta Mater., 2004, vol. 50, pp. 377–81.

    Article  CAS  Google Scholar 

  42. W.J. Kim, C.W. An, Y.S. Kim, and S.I. Hong: Scripta Mater., 2002, vol. 47, pp. 39–44.

    Article  CAS  Google Scholar 

  43. A.A. Gazder, F.D. Torre, C.F. Gu, C.H.J. Davies, and E.V. Pereloma: Mater. Sci. Eng., 2006, vol. A415, pp. 126–39.

    CAS  Google Scholar 

  44. J.M. Song, Y.H. Lin, C.W. Su, and J.Y. Wang: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1026–30.

    Article  CAS  Google Scholar 

  45. H. Yoshinaga and R. Horiuchi: Trans. JIM, 1963, vol. 4, pp. 134–41.

    CAS  Google Scholar 

  46. Z. Drozd, Z. Trojanová, and S. Kúdela: J. Alloy compd., 2004, vol. 378, pp. 192–95.

    Article  CAS  Google Scholar 

  47. T. Liu, W. Zhang, S.D. Wu, C.B. Jiang, S.X. Li, and Y.B. Xu: Mater. Sci. Eng., 2003, vol. A360, pp. 345–49.

    CAS  Google Scholar 

  48. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5–8.

    Article  CAS  Google Scholar 

  49. S.R. Agnew, M.H. Yoo, and C.N. Tomé: Acta Mater., 2001, vol. 49, pp. 4277–89.

    Article  CAS  Google Scholar 

  50. S.R. Agnew, P. Mehrotra, T.M. Lillo, G.M. Stoica, and P.K. Liaw: Acta Mater., 2005, vol. 53, pp. 3135–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the Iran National Science Foundation (INSF) for support of the current study under Grant no. 91041956.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mahmudi.

Additional information

Manuscript submitted January 20, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karami, M., Mahmudi, R. The Microstructural, Textural, and Mechanical Properties of Extruded and Equal Channel Angularly Pressed Mg-Li-Zn Alloys. Metall Mater Trans A 44, 3934–3946 (2013). https://doi.org/10.1007/s11661-013-1699-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1699-6

Keywords

Navigation