Skip to main content

Advertisement

Log in

Estimating Critical Stresses Required for Twin Growth in a Magnesium Alloy

  • Symposium: Phase Transformation & Deformation in Magnesium Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The aim of this study is to determine a value for the critical resolved stress for the growth of deformation twins. Loading–unloading tests are performed on extruded magnesium alloy Mg-3Al-1Zn to determine the loads under which twins begin to shrink during unloading. After conversion of the applied stress to mean resolved values, the critical stresses are seen to increase from 6 to 14 MPa as the plastic applied strain is raised from 1 to 6 pct. It is suggested that the “relaxation” dislocations generated to accommodate the twinning strain contribute to building a hard dislocation forest. The effect is analyzed by analogy with accommodation dislocations formed at non-deforming particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gharghouri MA, Weatherly GC, Embury JD, Root J.: Philos. Mag. A, 1999, vol. 79, p. 1671.

    Article  CAS  Google Scholar 

  2. Brown DW, Agnew SR, Bourke MAM, Holden TM, Vogel M, Tome C.: Mater. Sci. Eng. A 2005, vol. 399, p. 1.

    Article  Google Scholar 

  3. Clausen B, Tomé CN, Brown DW, Agnew SR. Acta Materialia 2008;56:2456.

    Article  CAS  Google Scholar 

  4. Muránsky O, Carr DG, Sittner P, Oliver EC. International Journal of Plasticity 2009;25:1107.

    Article  Google Scholar 

  5. Lebensohn RA, Tome CN. Philosphical Magnazine A 1993;67:187.

    Article  Google Scholar 

  6. R.W. Cahn: in: R.E. Reed-Hill JPHaHCR, editor. TMS-AIME Conf., Deformation Twinning, vol. 2525. Gainesville, Florida: American Institute of Mining, Metallurgical and Petroleum Engineers, INC., Printed in Great Britain, 1964. p.1.

  7. Bell RL, Cahn RW. Acta Metallurgica 1953;1:752.

    Article  Google Scholar 

  8. L. Capolungo, I.J. Beyerlein: Phys. Rev. B: Condens. Matter Mater. Phys., 2008, vol. 78, p. 024117.

  9. Wang J, Beyerlein IJ, Tomé CN. Scripta Materialia 2010;63:741.

    Article  CAS  Google Scholar 

  10. I.J. Beyerlein, C.N. Tome: Proc. R. Soc. A: Math., Phys. Eng. Sci., 2010, vol. 466, p. 2517.

  11. Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tome CN. Philosophical Magazine 2010;90:2161.

    Article  CAS  Google Scholar 

  12. Ghaderi A, Barnett MR. Acta Materialia 2011;59:7824.

    Article  CAS  Google Scholar 

  13. Christian JW, Mahajan S. Progress in Materials Science 1995;39:1.

    Article  Google Scholar 

  14. I.V. Bashmakov, M.E. Bosin, and F.F. Lavrentev: Phys. Status Solidi (A) Appl. Res., 1974, vol. 22, p. 305.

  15. Lavrentev FF, Bosin ME. Materials Science and Engineering 1978;33:243.

    Article  CAS  Google Scholar 

  16. Zhang RY, Daymond MR, Holt RA. Materials Science and Engineering: A 2008;473:139.

    Article  Google Scholar 

  17. Aydiner CC, Bernier JV, Clausen B, Lienert U, Tome CN, Brown DW. Physical Review B - Condensed Matter and Materials Physics 2009;80:024113.

    Article  Google Scholar 

  18. Kumosa M. Materials Science and Engineering 1986;77:37.

    Article  CAS  Google Scholar 

  19. Meyers MA, Vohringer O, Lubarda VA. Acta Materialia 2001;49:4025.

    Article  CAS  Google Scholar 

  20. Mura T. Micromechanics of Defects in Solids, Second Edition. Dordrecht: Kluwer, 1987.

    Book  Google Scholar 

  21. Tanaka K, Mura T. Metallurgical Transactions A 1982;13A:117.

    CAS  Google Scholar 

  22. H. Neuber: Theory of Notch Stresses. Springer, Berlin, English translation of 1937 edition, 1958.

  23. Kosevich AM, Boiko VS. Sov. Phys. Usp. 1971;14:286.

    Article  Google Scholar 

  24. Serra A, Bacon DJ. Philosophical Magazine A 1996;73:333.

    Article  CAS  Google Scholar 

  25. A. Serra, D.J. Bacon, and R.C. Pond: Acta Metall. Mater., 1991, vol. 39, p. 1469.

  26. Caceres CH, Sumitomo T, Veidt M. Acta Materialia 2003;51:6211.

    Article  CAS  Google Scholar 

  27. Mann GE, Sumitomo T, Caceres CH, Griffiths JR. Materials Science and Engineering: A 2007;456:138.

    Article  Google Scholar 

  28. Wu L, Jain A, Brown DW, Stoica GM, Agnew SR, Clausen B, Fielden DE, Liaw PK. Acta Materialia 2008;56:688.

    Article  CAS  Google Scholar 

  29. Barnett MR, Nave M, Keshavarz Z. Metall. Mater. Trans. A 2005;36A:1697.

    Article  CAS  Google Scholar 

  30. Friedel J. Dislocations. Oxford: Pergamon, 1964.

    Google Scholar 

  31. Agnew SR, Brown DW, Tomé CN. Acta Materialia 2006;54:4841.

    Article  CAS  Google Scholar 

  32. Muránsky O, Barnett MR, Luzin V, Vogel S. Materials Science and Engineering: A 2010;527:1383.

    Article  Google Scholar 

  33. Wang H, Raeisinia B, Wu PD, Agnew SR, Tomé CN. International Journal of Solids and Structures 2010;47:2905.

    Article  CAS  Google Scholar 

  34. Stanford N, Geng J, Chun YB, Davies CHJ, Nie JF, Barnett MR. Acta Materialia 2012;60:218.

    Article  CAS  Google Scholar 

  35. Muránsky O, Barnett MR, Carr DG, Vogel SC, Oliver EC. Acta Materialia 2010;58:1503.

    Article  Google Scholar 

  36. C.H. Cáceres, C.J. Davidson, J.R. Griffiths, and R. Svensson: Australian–Japan Workshop on Advancements in Magnesium Alloys and Processes. Brisbane, Noosa and Central Queensland Australia, 2002, p. 7.

  37. Woolley RL. Jounal of the Institute of Metals 1954;83:57.

    CAS  Google Scholar 

  38. Agnew SR, Tomé CN, Brown DW, Holden TM, Vogel SC. Scripta Materialia 2003;48:1003.

    Article  CAS  Google Scholar 

  39. Hama T, Takuda H. International Journal of Plasticity 2011;27:1072.

    Article  CAS  Google Scholar 

  40. Proust G, Tomé CN, Jain A, Agnew SR. International Journal of Plasticity 2009;25:861.

    Article  CAS  Google Scholar 

  41. Agnew SR, Yoo MH, Tome CN. Acta Materialia 2001;49:4277.

    Article  CAS  Google Scholar 

  42. M.R. Barnett, A. Ghaderi, and M.D. Nave: Acta Mater., 2012 (in press).

  43. Barnett MR, Keshavarz Z, Beer AG, Atwell D. Acta Materialia 2004;52:5093.

    Article  CAS  Google Scholar 

  44. Hirth JP, Pond RC. Progress in Materials Science 2011;56:586.

    Article  CAS  Google Scholar 

  45. Agnew SR, Horton JA, Yoo MH. Metallurgical and Materials Transactions A 2002;33A:851.

    CAS  Google Scholar 

  46. Roberts E, Partridge PG. Acta Metallurgica 1966;14:513.

    Article  CAS  Google Scholar 

  47. Ashby MF. Phil. Mag. 1970;21:399.

    Article  CAS  Google Scholar 

  48. Mecking H, Kocks U. Acta Materialia 1981;29:1865.

    Article  CAS  Google Scholar 

  49. Lavrentev FF. Materials Science and Engineering 1980;46:191.

    Article  CAS  Google Scholar 

  50. Wang J, Hirth JP, Tomé CN. Acta Materialia 2009;57:5521.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks to Professors W.B. Hutchinson and Y. Estrin for commenting on the manuscript and to David Embury, who pointed out the value of Bauschinger-type tests. Also, thanks to a Reviewer whose particularly constructive comments were helpful in correcting and refining our ideas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew Barnett.

Additional information

Manuscript submitted May 9, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barnett, M., Setty, M. & Siska, F. Estimating Critical Stresses Required for Twin Growth in a Magnesium Alloy. Metall Mater Trans A 44, 2962–2969 (2013). https://doi.org/10.1007/s11661-012-1573-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1573-y

Keywords

Navigation