Skip to main content
Log in

Morphology and Growth Kinetic Advantage of Quenched Twinned Dendrites in Al-Zn Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Twinned dendrites appearing in an Al-26 wt pct Zn alloy have been quenched during growth using a specifically designed setup that is positioned on top of a directional solidification experiment. X-ray tomography performed at the Swiss Light Source (SLS-beamline TOMCAT) allowed us to reconstruct the 3D morphology of these structures and to confirm previous observations performed on single 2D sections (Henry et al., Metall Mater Trans A 35A:2495–2501, 2004; Salgado-Ordorica and Rappaz, Acta Mater 56:5708–5718, 2008). Further characterization of these quenched specimens led to a better description of the mechanisms involved in the in-plane and lateral growth propagation of twinned dendrites. These were then put into relation with the competition mechanisms taking place during simultaneous solidification of twinned and regular dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. When trying to grow twinned dendrites from a twinned seed in a Bridgman furnace, we observed that individual regular dendrites only form.[16] Anada et al.[17] could produce successfully Al-7 wt. % Mg twinned dendrites in a Bridgman setup, thanks probably to the presence of magnesium and the large diameter of the crucibles (25 mm) which not only induced enough solutal convection, but also made quenching very inefficient.

References

  1. J. Herenguel. Rev. Metall., 45 (5):339–346, 1948.

    Google Scholar 

  2. R. E. Spear, R.T. Craig, and C.R. Howle. Influence of metal flow on the grain morphology in continuously cast aluminum. J. Metals, 23:42, 1971.

    CAS  Google Scholar 

  3. W. Schneider. 4th International Summer School on Al Alloy Technology, Trondheim, Norway, 1997.

  4. S. Henry, G. Gruen, and M. Rappaz. Influence of convection on feathery grain formation in aluminium alloys. Metall. Mater. Trans. A, 35 A:2495–2501, 2004.

    Article  CAS  Google Scholar 

  5. A.N. Turchin, D.G. Eskin, and L. Katgerman. Solidification under forced-flow conditions in a shallow cavity. Metall. Mater. Trans. A, 38 A:1317–1329, 2007.

    Article  CAS  Google Scholar 

  6. S. Henry, T. Minghetti, and M. Rappaz. Dendrite growth morphologies in aluminium alloys. Acta Mater., 46 (18):2495–2501, 1998.

    Article  Google Scholar 

  7. M.A Salgado-Ordorica and M. Rappaz. Twinned dendrite growth in aluminium alloys. Acta Mater., 56:5708–5718, 2008.

    Article  CAS  Google Scholar 

  8. Morris R.L., J.R. Carruthers, A. Plumtree, and W.C. Winegard. Growth twinning in aluminium alloys. AIME Metall. Soc. Trans., 236 (9):1286–1291, 1966.

    CAS  Google Scholar 

  9. J. Herenguel. (1949) Analyse d une texture de solidification du type basaltique. Rev. Metall., 46(5):309–314.

    Google Scholar 

  10. S. Henry, P. Jarry, M. Rappaz. (1998) <110> dendrite growth in aluminium feathery grains. Metall. Mater. Trans. A, 29A:2807–2817.

    Article  CAS  Google Scholar 

  11. S. Henry: PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, 1999.

  12. M.A. Salgado-Ordorica, J.-L. Desbiolles, and M. Rappaz: MCWASP XII Proceedings, by S. L. Cockcroft and D. Maijer, XII, 2008, pp. 545–552.

  13. M. Rappaz, J. Friedli, A. Mariaux, M.-A. Salgado-Ordorica (2010) Scripta Mater., 62:904–909.

    Article  CAS  Google Scholar 

  14. M.A. Salgado-Ordorica, J.-L. Desbiolles, and M. Rappaz. Study of twinned dendrite tip shape i: Phase-field modeling. Acta Mater, 50(13):5074–5084, 2011.

    Article  Google Scholar 

  15. M.A. Salgado-Ordorica, P. Burdet, M. Cantoni, and M. Rappaz. Study of twinned dendrite tip shape ii: Experimental assessment. Acta Mater, 50(13):5085–5091, 2011.

    Article  Google Scholar 

  16. M.A. Salgado-Ordorica, J. Valloton, and M. Rappaz. Study of twinned dendrite growth stability. Scripta Mater., 61:367–370, 2009.

    Article  CAS  Google Scholar 

  17. H. Anada, K. Funaki, Y. Nakashima, H. Sawabu, and S. Tada. Formation of feathery crystals depending on the solidifying conditions in Al-Mg alloys. Keikinzoku/J. Japan Inst. Light Metals, 36 (9):562–570, 1986.

    Article  CAS  Google Scholar 

  18. F. Gonzales, M. Rappaz (2006) Metall. Mater. Trans. A, 37A:2797.

    Article  CAS  Google Scholar 

  19. W. Kurz, B. Giovanola, and R. Trivedi. Theory of microstructural development during rapid solidification. Acta Metall., 34 (5):823–830, 1986.

    Article  CAS  Google Scholar 

  20. J. T. Mason, J.D. Verhoeven, and R. Trivedi. Primary dendrite spacing I. Experimental studies. J. Cryst. Growth, 59 (3):516–524, 1982.

    Article  CAS  Google Scholar 

  21. J.A. Warren and J.S. Langer. Prediction of dendritic spacings in a directional-solidification experiment. Phylos. Rev. E, 47 (4):2702–2712, 1993.

    Article  CAS  Google Scholar 

  22. M. Rappaz, A. Jacot, W.J. Boettinger. (2003) Last-stage solidification of alloys: theoretical model of dendrite-arm and grain coalescence. Metall. Mater. Trans. A, 34A:467–479.

    Article  CAS  Google Scholar 

  23. H. Esaka: PhD Thesis, Ecole Polytechnique Fédérale de Lausanne, 1986.

  24. H. Esaka, W. Kurz, R. Trivedi. Solidification Processes. The Institute of Metals, London, 1988.

    Google Scholar 

  25. Ch.-A. Gandin, M. Eshelman, R. Trivedi. (1996) Orientation dependence of primary dendrite spacing. Metall. Mater. Trans. A, 27A:2727–2737.

    Article  CAS  Google Scholar 

  26. D. Walton and B. Chalmers. The origin of prefered orientation in the columnar zone of ingots. Trans. AIME, 215:847–855, 1959.

    Google Scholar 

  27. C.A. Gandin, M. Rappaz, D. West, B.L. Adams. (1995) Grain texture evolution during columnar growth of dendritic alloys. Metall. Mater. Trans. A, 26A:1543–1551.

    Article  CAS  Google Scholar 

  28. R.E. Napolitano, S. Liu. (2004) Three-dimensional crystal-melt Wulff-shape and interfacial stiffness in the Al-Sn binary system. Phylos. Rev. B, 70:214103.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the staff of the Interdisciplinary Center for Electron Microscopy of the Ecole Polytechnique Fédérale de Lausanne (EPFL), and in particular, Dr Emmanuelle Boehm, for the help in the EBSD measurements. The help of Jean-Daniel Wagnière in constructing the quenching device is also greatly appreciated. The authors would also like to thank Prof. M. Stampanoni and Dr. Samuel McDonald for their help in conducting the tomography experiments using the TOMCAT beamline at the SLS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario A. Salgado-Ordorica.

Additional information

Manuscript submitted March 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salgado-Ordorica, M.A., Phillion, A.B. & Rappaz, M. Morphology and Growth Kinetic Advantage of Quenched Twinned Dendrites in Al-Zn Alloys. Metall Mater Trans A 44, 2699–2706 (2013). https://doi.org/10.1007/s11661-012-1539-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1539-0

Keywords

Navigation