Skip to main content
Log in

Strengthening Mechanisms in Mechanically Milled Oxide-Dispersed Iron Powders

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nanocrystalline iron and oxide dispersion-strengthened (ODS) iron powders (Fe, Fe-Y2O3, and Fe-Y2O3-Ti) were prepared by mechanical milling for periods ranging from 1 to 40 hours. The as-milled powders were examined for changes in their particle sizes, crystallite sizes, hardness values, and phases present as a function of milling time. Both the particle and the crystallite sizes of all the three compositions decreased with milling time, while the hardness values of all the three powders increased with milling time because of the crystallite size refinement. At the same crystallite size, the hardness values of Fe-Y2O3 and Fe-Y2O3-Ti powders were higher than that of the Fe powders. Though, the presence of 40 nm Y2O3 could be established for 2-hour milling, such particles were not resolvable in 40-hour-milled powders. However, SAD patterns confirmed the presence of complex oxide dispersoids in the Fe-Y2O3 and Fe-Y2O3-Ti powders. The variation of hardness value with the crystallite size and as a function of the milling time can be rationalized on the basis of Hall–Petch crystallite size strengthening in combination with dispersion strengthening (in Fe-Y2O3- and Fe-Y2O3-Ti-milled powders) due to dispersoids. The observed double-positive slopes in the Hall–Petch relationship can be explained in terms of an increase in misorientation angle between the crystallites with increasing milling time due to the crystallite rotation driven by disclination dipoles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.

    Article  CAS  Google Scholar 

  2. B.S. Murty and S. Ranganathan: Int. Mater. Rev., 1998, vol. 43, pp. 101-144.

    Article  CAS  Google Scholar 

  3. C. Cayron, E. Rath, I. Chu, S. Launois: J. Nucl. Mater., 2004, vol. 335, pp. 83–102.

    Article  CAS  Google Scholar 

  4. M.J. Alinger, G.R. Odette and D.T. Hoelzer: Acta Mater., 2009, vol. 57, pp. 392–406.

    Article  CAS  Google Scholar 

  5. M. Ratti, D. Leuvrey, M.H. Mathon and Y de Carlon: J. Nucl. Mater., 2009, vol. 386-388, pp. 540-43.

    Article  CAS  Google Scholar 

  6. L. Dai, Y. Liu and Z. Dong: Powder Technol., 2012, vol. 217, pp. 281-87.

    Article  CAS  Google Scholar 

  7. E. O. Hall: Proc. Phys. Soc. B, 1951, vol. 64, pp. 747-53.

    Article  Google Scholar 

  8. N. J. Petch: J. Iron Steel Inst. (Lond.), 1953, vol. 173, pp. 25-28.

    Google Scholar 

  9. J. Gil Sevillano, P. van Houtte and E. Aernoudt: Prog. Mater. Sci., 1981, vol. 25, pp. 69-412.

    Article  Google Scholar 

  10. T.H. de Keijser, J.I. Langford, E.J. Mittemeijer, A.B.P. Vogels: J. Appl. Crystallogr., 1982, vol. 15, pp. 308-14.

    Article  CAS  Google Scholar 

  11. C. Dong: J. Appl. Crystallogr., 1999, vol. 32, p. 838.

    Article  CAS  Google Scholar 

  12. H. Sakasegawa, S. Ohtuska, S. Ukai, H. Tanigawa, M. Fujiwara, H. Ogiwara and A. Kohyama: J. Nucl. Mater., 2007, vol. 367, pp. 185-90.

    Article  Google Scholar 

  13. J.S.C. Jang and C.C. Koch: Scripta Metall. Mater., 1990, vol. 24, pp. 1599-1604.

    Article  CAS  Google Scholar 

  14. T.G. Nieh and J. Wadsworth: Scripta Metall. Mater., 1991, vol. 25, pp. 955-58.

    Article  CAS  Google Scholar 

  15. K. Sulleiova, M. Besterci, and T. Kvackaj: Metal 2009, Proceedings 18th International Conference on Metallurgical and Materials, 2009, pp. 488–92.

  16. J. Eckert, J.C. Holzer, C.E. Krill III and W.L. Johnson: J. Mater. Res., 1992, vol. 7, pp. 1980-83.

    Article  CAS  Google Scholar 

  17. T. Volpp, E. Goring, W.M. Kusche and E. Arzt: Nanostruct. Mater., 1997, vol. 8, pp. 855-65.

    Article  CAS  Google Scholar 

  18. M. Klimiankou, R. Lindau and A. Moslang: J. Crystal Growth, 2003, vol. 249, pp. 381–87.

    Article  CAS  Google Scholar 

  19. S.W. Kim, T. Shobu, S. Ohtsuka, T. Kaito, M. Inoue and M. Ohnuma: Mater. Trans., 2009, vol. 50, pp. 917-21.

    Article  CAS  Google Scholar 

  20. Y. Kimura and S. Takaki: Mater. Trans. JIM, 1995, vol. 36, pp. 289-96.

    CAS  Google Scholar 

  21. D. Tabor: The Hardness of Metals, Oxford University Press, New York, NY, 2000.

    Google Scholar 

  22. P. Le Brun, E. Gaffet, L. Proyen, and L. Delaey: Scripta Metall. Mater., 1992, vol. 26, pp. 1743–48.

    Article  Google Scholar 

  23. H.H. Fu, D.J. Benson and M.A. Mayers: Acta Mater., 2001, vol. 49, pp. 2567-82.

    Article  CAS  Google Scholar 

  24. M. Murayama, J.M. Howe, H. Hidaka and S. Takaki; Science, 2002, vol. 295, pp. 2433-35.

    Article  CAS  Google Scholar 

  25. M.A. Meyers, A. Mishra and D.J. Benson, Prog. Mater. Sci., 2006, vol. 51, pp. 427-556.

    Article  CAS  Google Scholar 

  26. M. Seefeldt, Rev. Adv. Mater. Sci., 2001, vol. 2, pp. 44-79.

    CAS  Google Scholar 

  27. J. Miyake and M.E. Fine: Acta Metallur. Mater., 1992, vol. 40, pp. 733-41.

    Article  CAS  Google Scholar 

  28. M.F. Ashby: Metallurgical Society Conference, Gordon & Breach, New York, NY, 1968, p. 431.

  29. D.J. Bacon, U.F. Kocks and R.O. Scattergood: Philos. Mag., 1973, vol. 28, pp. 1241-63

    Article  Google Scholar 

  30. R. Vijay and M. Ramakrishna: International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, India, 2012, Unpublished Research.

Download references

Acknowledgments

The authors thank Mr. G.V.R. Reddy for his help in carrying out SEM analysis. The help rendered by Dr. K. Satya Prasad, DMRL, Hyderabad for TEM examination is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sundararajan.

Additional information

Manuscript submitted May 31, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vijay, R., Nagini, M., Joardar, J. et al. Strengthening Mechanisms in Mechanically Milled Oxide-Dispersed Iron Powders. Metall Mater Trans A 44, 1611–1620 (2013). https://doi.org/10.1007/s11661-012-1494-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1494-9

Keywords

Navigation