Skip to main content
Log in

Nitride Nanoparticle Addition to Beneficially Reinforce Hybrid Magnesium Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study is aimed at understanding the function of two nitride nanoparticles regarding altering the mechanical properties of hybrid magnesium alloys in relation to nanoparticle-matrix reactivity. Nitride nanoparticles were selected for reinforcement purposes due to the affinity between magnesium and nitrogen (in parallel with the well-known magnesium-oxygen affinity). AZ91/ZK60A and AZ31/AZ91 hybrid magnesium alloys were reinforced with AlN and Si3N4 nanoparticles (respectively) using solidification processing followed by hot extrusion. Each nitride nanocomposite exhibited higher tensile strength than the corresponding monolithic hybrid alloy. However, AZ91/ZK60A/AlN exhibited slightly lower tensile ductility than AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher tensile ductility than AZ31/AZ91. The formation of high strain zones (HSZs) (from particle surfaces inclusive) during tensile deformation as a significant mechanism supporting ductility enhancement was addressed. AZ91/ZK60A/AlN exhibited lower and higher compressive strength and ductility (respectively) compared to AZ91/ZK60A, while AZ31/AZ91/Si3N4 exhibited higher and unchanged compressive strength and ductility (respectively) compared to AZ31/AZ91. Nanograin formation (recrystallization) during room temperature compressive deformation (as a toughening mechanism) in relation to nanoparticle-stimulated nucleation (NSN) ability was also discussed. The beneficial (as well as comparative) effects of the respective nitride nanoparticle on each hybrid alloy are studied in this article.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M.M. Avedesian and H. Baker (ed.): ASM Specialty Handbook: Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.

  2. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi: Scripta Mater., 2006, vol. 55, pp. 1067–70.

    Article  CAS  Google Scholar 

  3. Y. Morisada, H. Fujii, T. Nagaoka, and M. Fukusumi: Mater. Sci. Eng. A, 2006, vol. 419, pp. 344–48.

    Article  Google Scholar 

  4. C.J. Lee, J.C. Huang, and P.J. Hsieh: Scripta Mater., 2006, vol. 54, pp. 1415–20.

    Article  CAS  Google Scholar 

  5. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta: J. Nanopart. Res., 2011, vol. 13, pp. 4855–66.

    Article  CAS  Google Scholar 

  6. M. Paramsothy, S.F. Hassan, N. Srikanth, and M. Gupta: J. Nanosci. Nanotechnol., 2010, vol. 10, pp. 956–64.

    Article  CAS  Google Scholar 

  7. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6545–51.

    Article  CAS  Google Scholar 

  8. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta: J. Nanotechnol., 2011. Doi:10.1155/2011/401574.

  9. M. De Cicco, H. Konishi, G. Cao, H.S. Choi, L.S. Turng, J.H. Perepezko, S. Kou, R. Lakes, and X. Li: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3038–45.

    Article  CAS  Google Scholar 

  10. H.J. Choi, J.H. Shin, B.H. Min, and D.H. Bae: Composites A, 2010, vol. 41, pp. 327–29.

    Article  Google Scholar 

  11. H.J. Choi, J.H. Shin, and D.H. Bae: Compos. Sci. Technol., 2011, vol. 71, pp. 1699–705.

    Article  CAS  Google Scholar 

  12. H.J. Choi, J.H. Shin, B.H. Min, J.S. Park, and D.H. Bae: J. Mater. Res., 2009, vol. 24(8), pp. 2610–16.

    Article  CAS  Google Scholar 

  13. H.T. Liu and L.Z. Sun: Acta Mater., 2005, vol. 53, pp. 2693–701.

    Article  CAS  Google Scholar 

  14. D.K. Ward, W.A. Curtin, and Y. Qi: Acta Mater., 2006, vol. 54, pp. 4441–51.

    Article  CAS  Google Scholar 

  15. M. Gupta, M.O. Lai, and C.Y.H. Lim: J. Mater. Process. Technol., 2006, vol. 176, pp. 191–99.

    Article  CAS  Google Scholar 

  16. M. Gupta, M.O. Lai, and S.C. Lim: J. Alloys Compd., 1997, vol. 260, pp. 250–55.

    Article  CAS  Google Scholar 

  17. S.F. Hassan and M. Gupta: J. Mater. Sci., 2006, vol. 41, pp. 2229–36.

    Article  CAS  Google Scholar 

  18. S.F. Hassan and M. Gupta: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2253–58.

    Article  CAS  Google Scholar 

  19. Z. Szaraz, Z. Trojanova, M. Cabbibo, and E. Evangelista: Mater. Sci. Eng. A, 2007, vol. 462, pp. 225–29.

    Article  Google Scholar 

  20. L.H. Dai, Z. Ling, and Y.L. Bai: Compos. Sci. Technol., 2001, vol. 61, pp. 1057–63.

    Article  CAS  Google Scholar 

  21. D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed., Butterworth-Heinemann, Oxford, 2002.

    Google Scholar 

  22. S.F. Hassan and M. Gupta: J. Alloys Compd., 2006, vol. 419, pp. 84–90.

    Article  CAS  Google Scholar 

  23. S.F. Hassan and M. Gupta: J. Alloys Compd., 2007, vol. 429, pp. 176–83.

    Article  CAS  Google Scholar 

  24. C.S. Goh, J. Wei, L.C. Lee, and M. Gupta: Acta Mater., 2007, vol. 55, pp. 5115–21.

    Article  CAS  Google Scholar 

  25. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta: Composites A, 2011, vol. 42, pp. 180–88.

    Article  Google Scholar 

  26. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta: Composites A, 2011, vol. 42, pp. 2093–100.

    Article  Google Scholar 

  27. M. Paramsothy, J. Chan, R. Kwok, and M. Gupta: J. Nanomater., 2011. doi:10.1155/2011/642980.

  28. C.J. Smithells and E.A. Brandes: Metals Reference Book, 5th ed., Butterworth & Co Ltd., London, 1976

    Google Scholar 

  29. H. Idrissi, L. Ryelandt, M. Veron, D. Schryvers, and P.J. Jacques: Scripta Mater., 2009, vol. 60, pp. 941–44.

    Article  CAS  Google Scholar 

  30. X.Z. Liao, S.G. Srinivasan, Y.H. Zhao, M.I. Baskes, Y.T. Zhu, F. Zhou, E.J. Lavernia, and H.F. Xu: Appl. Phys. Lett., 2004, vol. 84(18), pp. 3564–66.

    Article  CAS  Google Scholar 

  31. B. Hammer, K.W. Jacobsen, V. Milman, and M.C. Payne: J. Phys. Condens. Matter, 1992, vol. 4, pp. 10453–60.

    Article  CAS  Google Scholar 

  32. N.M. Rosengaard and H.L. Skriver: Phys. Rev. B, 1993, vol. 47(19), pp. 12865–73.

    Article  CAS  Google Scholar 

  33. K. Hernadi, A. Fonseca, J.B. Nagy, D. Bernaerts, A. Fudala, and A.A. Lucas: Zeolites, 1996, vol. 17, pp. 416–26.

    Article  CAS  Google Scholar 

  34. F. Xu, H. Zhao, and S.D. Tse: Proc. Combust. Inst., 2007, vol. 31, pp. 1839–47.

    Article  Google Scholar 

  35. Q. Zhao, T. Jiang, C. Li, and H. Yin: J. Ind. Eng. Chem., 2011, vol. 17, pp. 218–22.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National University of Singapore (NUS) and Temasek Defence Systems Institute (TDSI) for funding this research (TDSI/09-011/1A and WBS# R265000349).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muralidharan Paramsothy.

Additional information

Manuscript submitted April 23, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paramsothy, M., Chan, J., Kwok, R. et al. Nitride Nanoparticle Addition to Beneficially Reinforce Hybrid Magnesium Alloys. Metall Mater Trans A 44, 1123–1138 (2013). https://doi.org/10.1007/s11661-012-1433-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1433-9

Keywords

Navigation