Skip to main content
Log in

Reduced-Pressure Foaming of Aluminum Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

We developed a novel process for foaming aluminum and its alloys without using a blowing agent. The process involves a designated apparatus in which molten aluminum and its alloys are first foamed under reduced pressure and then solidified quickly. Foaming was done for pure aluminum (99.99 pct) and AlMg5 alloy not containing stabilizing particles and AlMg5 and AlSi9Mg5 alloys containing 5 vol pct SiO2 particles. We discuss the foaming mechanism and develop a model for estimating the porosity that can be achieved in this process. The nucleation of pores in foams is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J. Banhart: Progr. Mater. Sci., 2001, vol. 46, pp. 559–632.

    Article  CAS  Google Scholar 

  2. T. Miyoshi, M. Itoh, S. Akiyama, and A. Kitahara: Adv. Eng. Mater., 2000, vol. 4, pp. 179–83.

    Article  Google Scholar 

  3. V. Gergely and B. Clyne: Adv. Eng. Mater., 2000, vol. 2, pp. 175–78.

    Article  CAS  Google Scholar 

  4. G.S. Vinod Kumar, M. Chakraborty, F. Garcia-Moreno, and J. Banhart: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2898–08.

  5. J.D. Bryant, M. Crowley, W. Wang, D. Wilhelmy, and J. Kallivayalil: Porous Metal and Metallic Foams, DEStech Publications Inc., Lancaster, PA, 2007, pp. 19–22.

    Google Scholar 

  6. V. Gergely, D.C. Curran, and T.W. Clyne: Compos. Sci. Technol., 2003, vol. 63, pp. 2301–10.

    Article  CAS  Google Scholar 

  7. D. Leitlmeier, H.P. Degischer, and H.J. Flankl: Adv. Eng. Mater., 2002, vol. 4, pp. 735–40.

    Article  CAS  Google Scholar 

  8. N. Babcsán, D. Leitlmeier, H.P. Degischer, and J. Banhart: Adv. Eng. Mater., 2004, vol. 6, pp. 421–28.

    Article  Google Scholar 

  9. V. Shapalov: Porous and Cellular Materials for Structural Applications, MRS Publications, Warrendale, PA, 1998, vol. 512, p. 281.

  10. H. Nakajima: Progr. Mater. Sci., 2007, vol. 52, pp. 1091–73.

    Article  CAS  Google Scholar 

  11. L. Drenchev, J. Sobczak, S. Malinov, and W. Sha: Mater. Sci. Technol., 2006. vol. 22, pp. 1135–47.

    Article  CAS  Google Scholar 

  12. J. Campbell: Castings, 2nd ed., Butterworth-Heinmann, Burlington, MA, 2003.

  13. W. La-Orchan: Ph.D. Thesis, McGill University, Montreal, PQ, Canada, 1994.

  14. G.S. Vinod Kumar and S. Sundarraj: Metall. Mater. Trans. B, 2010, vol. 41B, pp. 495–99.

  15. A.M. Samuel and F.H. Samuel: Metall. Trans. A, 1993, vol. 24A, pp. 1857–68.

    CAS  Google Scholar 

  16. K. Renger and H. Kaufmann: Adv. Eng. Mater., 2005, vol. 7, pp. 117–23.

    Article  CAS  Google Scholar 

  17. H. Wiehler, C. Körner, and R.F. Singer: Adv. Eng. Mater., 2008, vol. 10, pp. 171–78.

    Article  CAS  Google Scholar 

  18. J.R. Davis: Aluminum and Aluminum Alloys, ASM INTERNATIONAL, Materials Park, OH, 1993.

    Google Scholar 

  19. J. Banhart: Advanced Tomographic Methods in Materials Research, Oxford University Press, Oxford, United Kingdom, 2008.

    Book  Google Scholar 

  20. P.N. Anyalebechi: Scripta Metall. Mater., 1995, vol. 33, pp. 1209–16.

    Article  CAS  Google Scholar 

  21. P.N. Anyalebechi: Scripta Mater., 1996, vol. 34, pp. 513–17.

  22. S.W. IP, Y. Wang, and J. M. Toguri: Can. Metall. Q., 1999, vol. 38, pp. 81–92.

    Article  CAS  Google Scholar 

  23. M. Mukherjee, F. Garcia-Moreno, and J. Banhart: Acta Mater., 2010, vol. 58 pp. 6358–70.

    Article  CAS  Google Scholar 

  24. D.E. J. Talbot: The Effects of Hydrogen in Aluminium and Its Alloys, Maney Publishing, London, 2004.

    Google Scholar 

  25. O. Prakash, H. Sang, and J.D. Embury: Mater. Sci. Eng. A, 1995, vol. 199, pp. 195–203.

    Article  Google Scholar 

  26. C. Körner, M. Hirschmann, V. Bräutigam, and R.F. Singer: Adv. Eng. Mater., 2004, vol. 6, pp. 385–90.

    Article  Google Scholar 

  27. P. Mohanty, F. Samuel, and J. Gruzleski: Metall. Trans. A, 1993, vol. 24A, pp. 1845–56.

    CAS  Google Scholar 

  28. J.S. Colton and N.P. Suh: Polym. Eng. Sci., 1987, vol. 27, pp. 500–03.

    Article  CAS  Google Scholar 

  29. M. Blander and J.L. Katz: AIChE J., 1975, vol. 21, pp. 833–48.

    Article  CAS  Google Scholar 

  30. V. Laurent, D. Chatain, C. Chatillon, and N. Eustathopoulos: Acta Metall., 1988, vol. 36, pp. 1797–1803.

    Article  CAS  Google Scholar 

  31. V. Laurent, D. Chatain, and N. Eustathopoulos: Mater. Sci. Eng. A, 1991, vol. 135, pp. 89–94.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Dr. André Hilger for the X-ray computed tomography of the foam samples

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Vinod Kumar.

Additional information

Manuscript submitted April 4, 2012.

Appendix

Appendix

For calculating the reduced pressure P RP , we consider that P atm = 1 bar and define

$$ P'_{RP} = \frac{{P_{RP} }}{{P_{\text{atm}} }} $$

Rearranging Eq. [4] gives

$$ V_{2} \times \frac{1}{{M_{{}} }} \times \frac{1}{{S_{{{\text{H}}({\text{atm}})}} }} \times \frac{{T_{1} }}{{T_{2} }} = \left( {1 - \sqrt {P'_{RP} } } \right) \times \frac{1}{{P'_{RP} }} $$
(A1)

or

$$ \left( {V_{2} \times \frac{1}{{M_{{}} }} \times \frac{1}{{S_{{{\text{H}}({\text{atm}})}} }} \times \frac{{T_{1} }}{{T_{2} }}} \right) \times P'_{RP} + \sqrt {P'_{RP} } - 1 = 0 $$
(A2)

which is a quadratic equation of type \( ax^{2} + bx + c = 0 \) with coefficients

$$ a = \left( {V_{p} \times \frac{1}{{M_{{}} }} \times \frac{1}{{S_{{{\text{H}}({\text{atm}})}} }} \times \frac{{T_{1} }}{{T_{2} }}} \right),\,\,b = 1,\,\,c = - 1,\,\,{\text{and}}\,\,\,x = \sqrt {P'_{RP} } $$

and has the solution

$$ P'_{RP} = x^{2} = \left( {\frac{{ - b \pm \sqrt {b^{2} - 4ac} }}{2a}} \right)^{2} $$
(A3)

The P RP calculated from Eq. [A3] has two solutions due to + ve and – ve signs in equation. Both solutions are given in Table I in columns 7 and 8.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vinod Kumar, G.S., Mukherjee, M., Garcia-Moreno, F. et al. Reduced-Pressure Foaming of Aluminum Alloys. Metall Mater Trans A 44, 419–426 (2013). https://doi.org/10.1007/s11661-012-1398-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1398-8

Keywords

Navigation