Skip to main content

Advertisement

Log in

Influence of Warm Tempforming on Microstructure and Mechanical Properties in an Ultrahigh-Strength Medium-Carbon Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A 0.4 pct C-2 pct Si-1 pct Cr-1 pct Mo steel was quenched and tempered at 773 K (500 °C) and deformed by multi-pass caliber rolling (i.e., warm tempforming). The microstructures and the mechanical properties of the warm tempformed steels were investigated as a function of the rolling reduction. At rolling reductions of more than 28 pct, not only extension of the martensite blocks and/or the packets in the rolling direction (RD) but also a grain subdivision became more significant, and an ultrafine elongated grain (UFEG) structure with a strong 〈110〉//RD fiber deformation texture was formed after 78 pct rolling. The tensile deformation behavior became significantly anisotropic in response to the evolution of UFEG structure. The longitudinal yield strength (σy) of the quenched and tempered sample increased from 1480 to 1860 MPa through the 78 pct rolling, while the transverse σy leveled off at around 1600 MPa up to 28 pct rolling. The transverse true fracture stress was also markedly degraded in contrast to the longitudinal one. Charpy impact properties were enhanced at a rolling reduction of 52 pct or more. The 52 pct-rolled sample underwent a ductile-to-brittle transition in the temperature range from 333 K to 213 K (60 °C to −60 °C), while the 78 pct-rolled sample showed an inverse temperature dependence of the impact toughness because of brittle delamination. The tensile and Charpy impact properties are discussed in association with the microstructural evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. T.V. Philip and T.J. McCaffrey: in Metals Handbook, 10th ed., ASM International, Ohio, 1990, vol. 1, pp. 430–48.

  2. Y. Tomita: Int. Mater. Rev., 2000, vol. 45, pp. 27–37.

    Article  CAS  Google Scholar 

  3. J.D. Embury, N.J. Petch, A.E. Wraith, and E.S. Wright: Trans. Metall. Soc. AIME, 1967, vol. 239, pp. 114–18.

    CAS  Google Scholar 

  4. D. Bika, J.A. Pfaendtner, M. Menyhard, and C.J. McMahon Jr.: Acta Metall. Mater., 1995, vol. 43, pp. 1895–1908.

    Article  CAS  Google Scholar 

  5. H. Ohtani and C.J. McMahon Jr.: Acta Metall., 1975, vol. 23, pp. 377–86.

    Article  CAS  Google Scholar 

  6. J.L. Maloney and W.M. Garrison Jr.: Acta Mater., 2005, vol. 53, pp. 533–51.

    Article  CAS  Google Scholar 

  7. L.E. Iorio and W.M. Garrison Jr.: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1165–73.

    Article  CAS  Google Scholar 

  8. W.M. Garrison Jr. and A.L. Wojcieszynski: Mater. Sci. Eng. A, 2007, vol. 464, pp. 321–29.

    Article  Google Scholar 

  9. J.A. Rinebolt and W.J. Harris Jr.: Trans. ASM, 1951, vol. 43, pp. 1175–1201.

    Google Scholar 

  10. C.K. Syn, S. Jin, and J.W. Morris Jr.: Metall. Trans. A, 1976, vol. 7A, pp. 1827–32.

    CAS  Google Scholar 

  11. J.W. Morris Jr., C.S. Lee, and Z. Guo: ISIJ Int., 2003, vol. 43, pp. 410–19.

    Article  CAS  Google Scholar 

  12. J.W. Morris Jr.: Science, 2008, vol. 320, pp. 1022–23.

    Article  CAS  Google Scholar 

  13. G.J. Spaeder: Metall. Trans., 1970, vol. 1, pp. 2011–14.

    Article  CAS  Google Scholar 

  14. K.T. Venkateswara Rao, W. Yu, and R.O. Ritchie: Metall. Trans. A, 1989, vol. 20A, pp. 485–97.

    Google Scholar 

  15. M.E. Launey and R.O. Richie: Adv. Mater., 2009, vol. 21, pp. 2103–10.

    Article  CAS  Google Scholar 

  16. D.L. Bourell: Metall. Trans. A, 1983, vol. 14A, pp. 2487–96.

    CAS  Google Scholar 

  17. Y. Maehara, F. Nakasato, Y. Ohmori, and F. Terasaki: Trans. Iron Steel Inst. Jpn., 1984, vol. 24, pp. 639–47.

    Article  CAS  Google Scholar 

  18. B. Mintz and W.B. Morrison: Mater. Sci. Technol., 2007, vol. 23, pp. 1346–56.

    Article  CAS  Google Scholar 

  19. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Mater. Trans., 2004, vol. 45, pp. 2272–81.

    Article  CAS  Google Scholar 

  20. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881–92.

    Article  CAS  Google Scholar 

  21. Y. Kimura, T. Inoue, F. Yin, O. Sitdikov, and K. Tsuzaki: Scripta Mater., 2007, vol. 57, pp. 465–68.

    Article  CAS  Google Scholar 

  22. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: Science, 2008, vol. 320, pp. 1057–60.

    Article  CAS  Google Scholar 

  23. Y. Kimura, T. Inoue, F. Yin, and K. Tsuzaki: ISIJ Int., 2010, vol. 50, pp. 152–61.

    Article  CAS  Google Scholar 

  24. T. Inoue, Y. Kimura, and S. Ochiai: Scripta Mater., 2011, vol. 65, pp. 552–55.

    Article  CAS  Google Scholar 

  25. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 341–55.

    Article  CAS  Google Scholar 

  26. T. Inoue, F. Yin, and Y. Kimura: Mater. Sci. Eng. A, 2007, vol. 466, pp. 114–22.

    Article  Google Scholar 

  27. M. Ojima, Y. Adachi, Y. Tomota, K. Ikeda, T. Kamiyama, and Y. Katada: Mater. Sci. Eng. A, 2009, vol. 527, pp. 16–24.

    Article  Google Scholar 

  28. M. Calcagnotto, D. Ponge, E. Demir, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2738–46.

    Article  Google Scholar 

  29. T. Ungár, M. Victoria, P. Marmy, P. Hanak, and G. Szenes: J. Nucl. Mater., 2000, vol. 276, pp. 278–82.

    Article  Google Scholar 

  30. F. Yin, T. Hanamura, O. Umezawa, and K. Nagai: Mater. Sci. Eng. A, 2003, vol. 354, pp. 31–39.

    Article  Google Scholar 

  31. Y. Nie, Y. Kimura, T. Inoue, F. Yin, E. Akiyama, and K. Tsuzaki: Metall. Mater. Trans. A., 2012, vol. 43A, pp. 1670–87.

    Article  Google Scholar 

  32. ASTM E23-05: 2005 Annual Book of ASTM Standards, 2005, pp. 158–84.

  33. G. Kurdjumov and G. Sachs: Z. Phys., 1930, vol. 64, pp. 325–43.

    Article  Google Scholar 

  34. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  CAS  Google Scholar 

  35. G. Langford and M. Cohen: Trans. ASM, 1969, vol. 62, pp. 623–38.

    CAS  Google Scholar 

  36. A. Belyakov, Y. Kimura, Y. Adachi, and K. Tsuzaki: Mater. Trans., 2004, vol. 45, pp. 2812–21.

    Article  CAS  Google Scholar 

  37. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Technol. Adv. Mater., 2004, vol. 5, pp. 153–62.

    Article  CAS  Google Scholar 

  38. D.A. Hughes and N. Hansen: Acta. Mater., 1997, vol. 45, pp. 3871–86.

    Article  CAS  Google Scholar 

  39. T. Swarr and G. Krauss: Metall. Trans. A, 1976, vol. 7A, pp. 41–48.

    CAS  Google Scholar 

  40. S. Takaki, K. Kawasaki, and Y. Kimura: J. Mater. Process. Technol., 2001, vol. 117, pp. 359–63.

    Article  CAS  Google Scholar 

  41. A. Ohmori, S. Torizuka, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 1063–71.

    Article  CAS  Google Scholar 

  42. Y. Tomota, A. Narui, and N. Tsuchida: ISIJ Int., 2008, vol. 48, pp. 1107–13.

    Article  CAS  Google Scholar 

  43. N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, and D. Terada: ISIJ Int., 2008, vol. 48, pp. 1114–21.

    Article  CAS  Google Scholar 

  44. Y. Kimura, T. Inoue, and K. Tsuzaki: J. Alloy. Compd, http://dx.doi.org/10.1016/j.jallcom.2011.12.123.

  45. A.J. McEvily Jr. and R.H. Bush: Trans. ASM, 1962, vol. 55, pp. 654–66.

    CAS  Google Scholar 

  46. C.M. Yen and C.A. Stickels: Metall. Trans., 1970, vol. 1, pp. 3037–47.

    CAS  Google Scholar 

  47. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  48. M. Wilkens: Phys. Stat. Sol. A, 1970, vol. 2, pp. 359–70.

    Article  Google Scholar 

  49. K. Nakashima, Y. Fujimura, H. Matsubayashi, T. Tsuchiyama, and S. Takaki: Tetsu-to-Hagané, 2007, vol. 93, pp. 459–65 (in Japanese).

    Article  Google Scholar 

  50. J. Pešička, R. Kužel, A. Dronhofer, and G. Eggeler: Acta Mater., 2003, vol. 51, pp. 4847–62.

    Article  Google Scholar 

  51. Y. Kimura, H. Hidaka, and S. Takaki: Mater. Trans. JIM, 1999, vol. 40, pp. 1149–57.

    CAS  Google Scholar 

  52. S. Ryufuku, T. Suzuki, H. Suzuki, and Y. Tomota: Tetsu-to-Hagané, 2008, vol. 94, pp. 121–29 (in Japanese).

    Article  CAS  Google Scholar 

  53. T. Tanaka: Int. Met. Rev., 1981, vol. 4, pp. 185–212.

    Article  Google Scholar 

  54. T. Suzuki, Y. Tomota, A. Moriai, and H. Tashiro: Mater. Trans., 2009, vol. 50, pp. 51–55.

    Article  CAS  Google Scholar 

  55. T. Ohmura, K. Tsuzaki, and S. Matsuoka: Philos. Mag. A, 2002, vol. 82, pp. 1903–10.

    CAS  Google Scholar 

  56. S. Takaki, K. Kawasaki, Y. Futamura, and T. Tsuchiyama: Mater. Sci. Forum, 2006, vols. 503–504, pp. 317–22.

  57. N. Tsuchida, Y. Morimoto, S. Okamoto, K. Fukaura, Y. Harada, and R. Ueji: J. Jpn. Inst. Met., 2008, vol. 72, pp. 769–75 (in Japanese).

    Article  CAS  Google Scholar 

  58. M. Yoshitake, T. Tsuchiyama, and S. Takaki: Tetsu-to-Hagané, 2012, vol. 98, pp. 223–28 (in Japanese).

    Article  CAS  Google Scholar 

  59. M. Koyama, T. Sawaguchi, and K. Tsuzaki: Tetsu-to-Hagané, 2012, vol. 98, pp. 229–36 (in Japanese).

    Article  CAS  Google Scholar 

  60. Y. Takemoto and T. Senuma: Tetsu-to-Hagané, 2012, vol. 98, pp. 216–22 (in Japanese).

    Article  CAS  Google Scholar 

  61. T. Lee, C.H. Park, D. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6558–64.

    Article  CAS  Google Scholar 

  62. Y. Sakai, M. Ohtaguchi, Y. Kimura, and K. Tsuzaki: Proc. Ultrafine Grained Materials, R.S. Mishra, S.L. Semiatin, C. Suryanarayana, N.N. Thadhani, and T.C. Lowe, eds., TMS, Pennsylvania, 2000, pp. 361–70.

  63. W. Zhou and N.L. Loh: Scripta Mater., 1996, vol. 34, pp. 633–39.

    Article  CAS  Google Scholar 

  64. J. Tianfu, Z. Jingwu, F. Wantang, and G. Ming: J. Mater. Sci. Lett., 1997, vol. 16, pp. 485–89.

    Article  Google Scholar 

  65. D.W. Kum, T. Oyama, J. Wadsworth, and O.D. Sherby: J. Mech. Phys., 1983, vol. 31, pp. 173–86.

    Article  Google Scholar 

  66. S. Torizuka, A. Ohmori, S. V. S. Narayana Murty and K. Nagai: Scripta Mater., 2006, vol. 54, pp. 563–68.

  67. M. Jafari, Y. Kimura, and K. Tsuzaki: Mater. Sci. Eng. A, 2012, vol. 532, pp. 420–29.

    Article  CAS  Google Scholar 

  68. T. Yutori, M. Katsumata, and Y. Kanetsuki: Bull. JIM, 1989, vol. 28, pp. 313–15 (in Japanese).

    Google Scholar 

  69. I. Ochiai, S. Nishida, H. Ohba, and A. Kawana: Tetsu-to-Hagané, 1993, vol. 79, pp. 89–95 (in Japanese).

    Google Scholar 

Download references

Acknowledgments

The authors thank Mr. Kuroda and Mr. Taniuchi for materials processing with caliber-rolling and Ms. Hirota for her help with the microstructural observation. We also gratefully acknowledge Drs. Nie and Yin for their quantitative XRD analysis. The study was partly supported by KAKENHI 21560763 and partly supported by the Japan Science and Technology Agency (JST) under Collaborative Research Based on Industrial Demand “Heterogeneous Structure Control: Towards Innovative Development of Metallic Structural Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuuji Kimura.

Additional information

Manuscript submitted May 25, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kimura, Y., Inoue, T. Influence of Warm Tempforming on Microstructure and Mechanical Properties in an Ultrahigh-Strength Medium-Carbon Low-Alloy Steel. Metall Mater Trans A 44, 560–576 (2013). https://doi.org/10.1007/s11661-012-1391-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1391-2

Keywords

Navigation