Skip to main content
Log in

Ultrafine Structure and High Strength in Cold-Rolled Martensite

  • Symposium: Deformation and Transitions at Grain Boundaries
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Structural refinement by cold rolling (10 to 80 pct reductions) of interstitial free (IF) steel containing Mn and B has been investigated from samples with different initial structures: (a) lath martensite, (b) coarse ferrite (grain size 150 μm), and (c) fine ferrite (22 μm). Unalloyed IF steel with a coarse grain size (120 μm) has also included based on a previous study. Deformation microstructures and structural parameters have been analyzed by transmission electron microscopy and electron backscatter diffraction, and mechanical properties have been characterized by hardness and tensile testing. At low to medium strains, lath martensite transforms into a cell block structure composed of cell block boundaries and cell boundaries with only a negligible change in strength. At medium to large strains, cell block structures in all samples refine with increasing strain and the hardening rate is constant (stage IV). A strong effect of the initial structure is observed on both the structural refinement and the strength increase. This effect is largest in lath martensite and smallest in unalloyed ferrite. No saturation in structural refinement and strength is observed. The discussion covers the transformation of lath martensite into a cell block structure at low to medium strains where the driving force is suggested to be a decrease in the dislocation line energy. Medium to large strain-hardening mechanisms are discussed together with structure-strength relationships assuming additive stress contributions from dislocations, boundaries, and elements in solid solution. Good agreement is found between flow stress predictions and stress values observed experimentally both in the initial undeformed martensite and in deformed samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Hansen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2917–35.

    Article  CAS  Google Scholar 

  2. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Acta Mater., 2002, vol. 50, pp. 4177–89.

    Article  CAS  Google Scholar 

  3. R. Ueji, N. Tsuji, Y. Minamino, and Y. Koizumi: Sci. Tech. Adv. Mater., 2004, vol. 5, pp. 153–62.

    Article  CAS  Google Scholar 

  4. S. Morito, S. Iwamoto, and T. Maki: Proc. 1st Joint Int. Conf. of Rex&GG, G. Gottstein, and D.A. Molodov, eds., Springer-Verlag, Aachen, Germany, 2001, pp. 1191–96.

  5. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Proc. 25th Risø Int. Symp. on Materials Science: Evolution of Deformation Microstructures in 3D, C. Gundlach, K. Haldrup, N Hansen, X. Huang, D.J. Jensen, T. Leffers, Z.J. Li, S.F. Nielsen, W. Pantleon, J.A. Wert, and G. Winther, eds., Risø, Denmark, 2004, pp. 453–58.

  6. N. Hansen: Acta Metall., 1977, vol. 25, pp. 863–69.

    Article  CAS  Google Scholar 

  7. A. van den Beukel: Scripta Metall., 1978, vol. 12, pp. 809–13.

  8. N. Hansen: Yield, Flow and Fracture of Polycrystals, T.N. Baker, ed., Applied Science, London, U.K., 1983, pp. 311–48.

  9. M.F. Ashby: Philos. Mag., 1970, vol. 21, pp. 399–424.

    Article  CAS  Google Scholar 

  10. H.S. Chen, A. Godfrey, N. Hansen, J.X. Xie, and Q. Liu: Mater. Sci. Eng. A, 2007, vol. 483–84, pp. 157–60.

    Google Scholar 

  11. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  CAS  Google Scholar 

  12. B.L. Li, A. Godfrey, Q.C. Meng, Q. Liu, and N. Hansen: Acta Mater., 2004, vol. 52, pp.1069–81.

    Article  CAS  Google Scholar 

  13. S. Zaefferer: J. Appl. Cryst., 2000, vol. 33, pp. 10–25.

    Article  CAS  Google Scholar 

  14. Q. Liu: Ultramicroscopy, 1995, vol. 60, pp. 81–89.

    Article  CAS  Google Scholar 

  15. S. Morito, J. Nishikawa, and T. Maki: ISIJ Int., 2003, vol. 43, pp. 1475–77.

    Article  CAS  Google Scholar 

  16. S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki: Acta Mater., 2003, vol. 51, pp. 1789–99.

    Article  CAS  Google Scholar 

  17. S. Morito, X. Huang, T. Furuhara, T. Maki, and N. Hansen: Acta Mater., 2006, vol. 54, pp. 5323–31.

    Article  CAS  Google Scholar 

  18. C.A. Apple, R.N. Caron, and G. Krauss: Metall. Trans., 1974, vol. 5, pp. 593–99.

    Article  CAS  Google Scholar 

  19. P.M. Kelly, A. Jostsons, and R.G. Blake: Acta Metall. Mater., 1990, vol. 38, pp. 1075–81.

    Article  CAS  Google Scholar 

  20. X. Huang and G. Winther: Phil. Mag. A, 2007, vol. 87, pp. 5189–5214.

    Article  CAS  Google Scholar 

  21. X. Huang, N. Hansen, and N. Tsuji: Science, 2006, vol. 312, pp. 249–51.

    Article  CAS  Google Scholar 

  22. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–99.

    Article  CAS  Google Scholar 

  23. Y.T. Zhu and X.Z. Liao: Nature Mater., 2004, vol. 3, pp. 351–52.

    Article  CAS  Google Scholar 

  24. M.A. Meyers, A. Mishra, and D.J. Benson: Progr. Mater. Sci., 2006, vol. 51, pp. 427–556.

    Article  CAS  Google Scholar 

  25. N. Kamikawa, X. Huang, N. Tsuji, and N. Hansen: Acta Mater., 2009, vol. 57, pp. 4198–4208.

    Article  CAS  Google Scholar 

  26. A. Shibata, T. Nagoshi, M. Sone, S. Morito, and Y. Higo: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7538–44.

    Article  Google Scholar 

  27. Q. Liu, X. Huang, D.J. Lloyd, and N. Hansen: Acta Mater., 2002, vol. 50, pp. 3789–3802.

  28. N. Hansen and D.A. Hughes: Phys. Stat. Sol. B, 1995, vol. 149, pp. 155–72.

    Article  CAS  Google Scholar 

  29. K. Nakashima, Y. Fujimura, H. Matsubayashi, T. Tsuchiyama, and S. Takaki: Tetsu-to-Hagané, 2007, vol. 93, pp. 459–65.

    Article  Google Scholar 

  30. E.F. Rauch and J.H. Schmitt: Mater. Sci. Eng. A, 1989, vol. 113, pp. 441–48.

    Article  Google Scholar 

  31. J.H. Schmitt, J.V. Fernandes, J.J. Gracio, and M.F. Vieira: Mater. Sci. Eng. A, 1991, vol. 114, pp. 143–54.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Danish National Research Foundation for supporting the Danish-Chinese Center for Nanometals, within which part of the present work was performed. S.M. thanks the Center for Integrated Research in Science, Shimane University, for the permission to use the TEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Huang.

Additional information

Manuscript submitted February 3, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, X., Morito, S., Hansen, N. et al. Ultrafine Structure and High Strength in Cold-Rolled Martensite. Metall Mater Trans A 43, 3517–3531 (2012). https://doi.org/10.1007/s11661-012-1275-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1275-5

Keywords

Navigation