Skip to main content
Log in

Microstructure Evolution during Roller Hemming of AZ31B Magnesium Sheet

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The differences in the microstructure evolution during laser-roller hemming and conventional roller hemming (done at room temperature) of commercial-grade AZ31B sheet were studied using electron backscatter diffraction (EBSD). It was observed that the flanging operation, done as a precursor to roller hemming, produced a heterogeneous grain structure that remained throughout the subsequent hemming steps. Laser heating, applied during the roller passes, significantly reduced the amount of both extension and contraction twinning in the inner and outer band, respectively. More importantly, after two roller passes without laser heating, extension twinning in the inner band seemed to saturate. This forced the material in the inner band to accommodate further deformation by harder mechanisms, such as pyramidal slip and contraction twinning, during the third roller pass when failure occurred. The laser-hemmed samples exhibited much lower hardness values, especially in the inner band, which was deemed to be largely responsible for the success of the hemming operation with laser heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Mater. Sci. Eng. A, 2001, vol. 302, pp. 37–45.

    Article  Google Scholar 

  2. J.E. Carsley: Proceedings of TMS Annual Meeting and Exhibition, Warrendale, PA, 2005, pp. 169–74.

  3. J. Carsley and S. Kim: J. Mater. Eng. Perform., 2007, vol. 16, pp. 331–38.

    Article  CAS  Google Scholar 

  4. J.E. Carsley: MS&T Conference, Pittsburgh, PA, 2009.

  5. R.E. Reed-Hill and W.D. Robertson: Acta Metall., 1957, vol. 5, pp. 728–37.

    Article  CAS  Google Scholar 

  6. F. Kelly and EW Hosford: Trans. TMS-AIME, 1968, vol. 242, pp. 5–13.

    Google Scholar 

  7. T. Obara, H. Yoshinga, and S. Morozumi: Acta Metall., 1973, vol. 21, pp. 845–53.

    Article  CAS  Google Scholar 

  8. X.Y. Lou, M. Li, R.K. Boger, S.R. Agnew, and R.H. Wagoner: Int. J. Plast., 2007, vol. 23, pp. 44–86.

    Article  CAS  Google Scholar 

  9. M.H. Yoo: Metall. Trans. A, 1981, vol. 12A, pp. 409–18.

    Google Scholar 

  10. J.J. Jonas, S. Mu, T. Al-Samman, G. Gottstein, L. Jiang, and Ė. Martin: Acta Mater., 2011, vol. 59, pp. 2046–56.

    Article  CAS  Google Scholar 

  11. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 8–16.

    Article  Google Scholar 

  12. M. Knezevic, A. Levinson, R. Harris, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi: Acta Mater., 2010, vol. 58, pp. 6230–42.

    Article  CAS  Google Scholar 

  13. U.F. Kocks, C.N. Tomé, and H.-R. Wenk: Texture and Anistotropy, Cambridge University Press, Cambridge, U.K., 1998.

    Google Scholar 

  14. T. Al-Samman and G. Gottstein: Mater. Sci. Forum, 2007, vols. 539–43, pp. 3401–06.

    Article  Google Scholar 

  15. B.C. Wonsiewicz and W.A. Backofen: Trans. TMS-AIME, 1967, vol. 239, pp. 1476–78.

    Google Scholar 

  16. J. Jiang, A. Godfrey, W. Liu, and Q. Liu: Mater. Sci. Eng. A, 2008, vols. 483–484, pp. 576–79.

    Google Scholar 

  17. M. Humphreys and F.J. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Amsterdam, the Netherlands, 2004.

    Google Scholar 

  18. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–5103.

    Article  CAS  Google Scholar 

  19. Orientation Imaging Microscopy, v. 6.1, copyright 2011 (computer software).

  20. A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra: Int. J. Plast., 2011, vol. 27, pp. 688–706.

    Article  CAS  Google Scholar 

  21. M.A. Meyers, O. Vöhringer, and V.A. Lubarda: Acta Mater., 2001, vol. 49, pp. 4025–39.

    Article  CAS  Google Scholar 

  22. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 1–7.

    Article  Google Scholar 

  23. L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet: Acta Mater., 2007, vol. 55, pp. 3899–3910.

    Article  CAS  Google Scholar 

  24. E.A. Ball and P.B. Prangnell: Scripta Metall. Mater., 1994, vol. 31, pp. 111–16.

    Article  CAS  Google Scholar 

  25. D.L. Yin, J.T. Wang, J.Q. Liu, and X. Zhao: J. Alloys Compd., 2009, vol. 478, pp. 789–95.

    Article  CAS  Google Scholar 

  26. W. Buchmann: Technology of Magnesium and its Alloys, Hughes, London, U.K., 1940.

    Google Scholar 

  27. J.P. Nobre, U. Noster, M. Kornmeier, A.M. Dias, and B. Scholtes: Key Eng. Mater., 2002, vols. 230–232, pp. 267–70.

    Article  Google Scholar 

  28. Z.S. Basinski, M.S. Szczerba, M. Niewczas, J.D. Embury, and S.J. Basinski: Rev. Metall./Cah. Inf. Tech., 1997, vol. 94, pp. 1037–44.

    CAS  Google Scholar 

  29. S.R. Kalidindi, A.A. Salem, and R.D. Doherty: Adv. Eng. Mater., 2003, vol. 5, pp. 229–32.

    Article  CAS  Google Scholar 

  30. A.A. Salem, S.R. Kalidindi, R. Doherty, and S.L. Semiatin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 259–68.

    Article  CAS  Google Scholar 

  31. K. Máthis, J. Capek, Z. Zdrazilová, and Z. Trojanová: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5904–07.

    Article  Google Scholar 

  32. C.-W. Tan, S.-N. Xu, L. Wang, Z.-Y. Chen, F.-C. Wang, and H.-N. Cai: Trans. Nonferrous Met. Soc. China, 2007, vol. 17, pp. 41–45.

    Article  CAS  Google Scholar 

  33. W.H. Hartt and R.E. Reed-Hill: Trans. TMS-AIME, 1967, vol. 242, pp. 1127–33.

    Google Scholar 

  34. X. Li, P. Yang, L.N. Wang, L. Meng, and F. Cui: Mater. Sci. Eng. A, 2009, vol. 517, pp. 160–69.

    Article  Google Scholar 

  35. M.R. Barnett, M.D. Nave, and C.J. Bettles: Mater. Sci. Eng. A, 2004, vol. 386, pp. 205–11.

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge gratefully the financial support received for this work through NSF-GOALI Awards 0654179 and 1006784. The authors wish to thank Dr. John Carsley (GM R&D Center, Warren, MI) for supplying the roller-hemmed samples, Mr. Robert Kubic (GM R&D Center, Warren, MI) for help with EBSD data collection, and both for many discussions. A.L. would also like to thank General Motors for providing an internship that permitted this work to be undertaken.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya R. Kalidindi.

Additional information

Manuscript submitted August 19, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levinson, A., Mishra, R.K., Doherty, R.D. et al. Microstructure Evolution during Roller Hemming of AZ31B Magnesium Sheet. Metall Mater Trans A 43, 3824–3833 (2012). https://doi.org/10.1007/s11661-012-1184-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1184-7

Keywords

Navigation