Skip to main content
Log in

Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The jerky and smooth flow curves in high-manganese twinning induced plasticity (TWIP) steels were investigated by comparing Fe-Mn-C and Fe-Mn-Al-C systems. The pronounced serrations on the flow curves of Fe-Mn-C TWIP steel, produced during tensile testing at 300 K (27 °C) and 373 K (100 °C), were shown to be the result of localized high-temperature Portevin Le-Chatelier (PLC) bands moving across the gage length throughout the deformation. The speed of the PLC bands and their temperature effects were found to be strongly dependent on the applied strain rate, which was controlled by adjusting the cross-head speed of the tensile testing machine. The localized temperature-dependent stacking fault energy (SFE) variations resulting from the PLC effect and adiabatic heating were analyzed and compared for both slow and fast deformation rates. The instabilities in the measured logarithmic strain values caused by jerky flow could cause the local strain rate to deviate systematically from the targeted (applied) strain rate. These instabilities are better observed by calculating the instantaneous strain rate (ISR) values for each instant of deformation along the entire gage length. Finally, a new type of diagram was developed by plotting the true stress against the ISR values. From the diagram, the onset of different mechanisms, such as deformation twinning, nonpronounced, and pronounced serrations, could be marked precisely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S.J. Lee, J. Kim, S.N. Kane, and B.C. De-Cooman: Acta Mater., 2011, vol. 59, pp. 6809–19.

    Article  CAS  Google Scholar 

  2. M. Koyama, T. Sawaguchi, T. Lee, C.S. Lee, and K. Tsuzaki: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7310–16.

    Article  CAS  Google Scholar 

  3. K. Chung, K. Ahn, D.H. Yoo, K.H. Chung, M.H. Seo, and S.H. Park: Int. J. Plast., 2011, vol. 27, pp. 52–81.

    Article  CAS  Google Scholar 

  4. K. Renard, S. Ryelandt, and P.J. Jacques: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2969–77.

    Article  Google Scholar 

  5. P.D. Zavattieri, V. Savic, L.G. Hector Jr., J.R. Fekete, W. Tong, and Y. Xuan: Int. J. Plast., 2009, vol. 25, pp. 2298–2330.

    Article  CAS  Google Scholar 

  6. J. Kim, L. Chen, H. Kim, S.K. Kim, Y. Estrin, and B.C. De-Cooman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3147–58.

    Article  CAS  Google Scholar 

  7. L. Chen, H. Kim, S.K. Kim, and B.C. De-Cooman: ISIJ Int., 2007, vol. 47, pp. 1804–12.

    Article  CAS  Google Scholar 

  8. Y.N. Dastur and W.C. Leslie: Metall. Trans. A, 1981, vol. 12A, pp. 749–59.

    Google Scholar 

  9. L.J. Cuddy and W.C. Leslie: Acta Metall., 1972, vol. 20, pp. 1157–67.

    Article  CAS  Google Scholar 

  10. V. Kandarpa and J.W. Spretnak: Trans. TMS-AIME, 1969, vol. 245, pp. 1439–42.

    CAS  Google Scholar 

  11. P. Hähner, A. Zeigenbein, and H. Neuhäuser: Phil. Mag. A, 2001, vol. 81, pp. 1633–49.

    Article  Google Scholar 

  12. P. Hähner: Mater. Sci. Eng. A, 1996, vol. 207, pp. 208–15.

    Article  Google Scholar 

  13. P. Hähner: Mater. Sci. Eng. A, 1996, vol. 207, pp. 216–23.

    Article  Google Scholar 

  14. A. Ziegenbein, P. Hähner, and H. Neuhäuser: Mater. Sci. Eng. A, 2001, vols. 309-10, pp. 336–39.

    Google Scholar 

  15. G. Lasko, P. Hähner, and S. Schmauder: Modell. Simul. Mater. Sci. Eng., 2005, vol. 13, pp. 645–56.

    Article  CAS  Google Scholar 

  16. S. Bross, P. Hähner, and E.A. Steck: Comput. Mater. Sci., 2003, vol. 26, pp. 46–55.

    Article  Google Scholar 

  17. J. von Appen and R. Dronskowski: Steel. Res. Int., 2011, vol. 82, no. 2, pp. 101–07.

    Article  Google Scholar 

  18. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177–83.

    Article  CAS  Google Scholar 

  19. P. Penning: Acta Metall., 1972, vol. 20, pp. 1169–75.

    Article  Google Scholar 

  20. L.P. Kubin and Y. Estrin: Acta Metall., 1985, vol. 33, pp. 397–407.

    Article  Google Scholar 

  21. C. Fressengeas, A.J. Beaudoinb, M. Lebyodkin, L.P. Kubin, and Y. Estrin: Mater. Sci. Eng. A, 2005, vols. 400–401, pp. 226–30.

  22. L.P. Kubin, K. Chinab, and Y. Estrin: Acta Metall., 1988, vol. 36, pp. 2707–18.

    Article  CAS  Google Scholar 

  23. L.P. Kubin and Y. Estrin: Acta Metall., 1990, vol. 38, pp. 697–708.

    Article  CAS  Google Scholar 

  24. A.H. Cottrell: Phil. Mag., 1953, vol. 44, p. 829.

    CAS  Google Scholar 

  25. S. Zhang, P.G. McCormick, and Y. Estrin: Acta Mater., 2001, vol. 49, pp. 1087–94.

    Article  CAS  Google Scholar 

  26. Z. Kovács, D. Fátay, K. Nyilas, and J. Lendvai: J. Eng. Mater. Technol., 2002, vol. 124, pp. 23–26.

    Article  Google Scholar 

  27. R. Zielke, H.A. Crostack, X. Feng, and G. Fischer: Proc. of the Quantitative Infrared Thermography (QIRT) Conf., 2008, Krakow, Poland.

  28. S. Rajesh and G. Ananthakrishna: Phys. Rev. E, 2000, vol. 61, pp. 3664–74.

    Article  CAS  Google Scholar 

  29. A. Saeed-Akbari, L. Mosecker, A. Schwedt, and W. Bleck: Metall. Mater. Trans. A, 2012, DOI:10.1007/s11661-011-0993-4, in press

  30. J.A. Venables: Proc. Eur. Conf. on Electron Microscopy, Delft, The Netherlands, 1960, vol. 1, pp. 443–46.

  31. J.A. Venables: Phil. Mag., 1961, vol. 6, p. 379.

    Article  CAS  Google Scholar 

  32. H. Idrissi, K. Renard, D. Schryvers, and P.J. Jacques: Scripta Mater., 2010, vol. 63, pp. 961–64.

    Article  CAS  Google Scholar 

  33. H. Idrissi, K. Renard, L. Ryelandt, D. Schryvers, and P.J. Jacques: Acta Mater., 2010, vol. 58, pp. 2464–76.

    Article  CAS  Google Scholar 

  34. J. Kim, S.J. Lee, and B.C. De-Cooman: Scripta Mater., 2011, vol. 65, pp. 363–66.

    Article  CAS  Google Scholar 

  35. G. Gottstein: Physical Foundations of Materials Science, Springer-Verlag, Berlin, Germany, 2004.

  36. S. Asgari, E. El-Danaf, S.R. Kalidindi, and R. Doherty: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1781–94.

    Article  CAS  Google Scholar 

  37. S.M. Zhu and J.F. Nie: Scripta Mater., 2004, vol. 50, pp. 51–55.

    Article  CAS  Google Scholar 

  38. W.G. Johnston and D.F. Stein: Acta Metall., 1963, vol. 11, pp. 317–18.

    Article  CAS  Google Scholar 

  39. D. Canadinc, C. Efstathiou, and H. Sehitoglu: Scripta Mater., 2008, vol. 59, pp. 1103–06.

    Article  CAS  Google Scholar 

  40. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, Boston, MA, 1986, pp. 184–240.

    Google Scholar 

  41. A.S. Hamada: Ph.D. Dissertation, University of Oulu, Oulu, Finland, 2007.

  42. A.S. Hamada, L.P. Karjalainen, and M.C. Somani: Mater. Sci. Eng. A, 2007, vol. 467, pp. 114–24.

    Article  Google Scholar 

  43. I. Gutierrez-Urrutia and D. Raabe: Acta Mater., 2011, vol. 59, pp. 6449–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center (SFB) 761 “Steel—ab initio.” The assistance of A. Schwedt, Head of the Scanning Electron Microscopy group at the Central Facility for Electron Microscopy - RWTH Aachen University, Aachen, Germany, is highly appreciated for providing Figure 21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Saeed-Akbari.

Additional information

Manuscript submitted August 30, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saeed-Akbari, A., Mishra, A.K., Mayer, J. et al. Characterization and Prediction of Flow Behavior in High-Manganese Twinning Induced Plasticity Steels: Part II. Jerky Flow and Instantaneous Strain Rate. Metall Mater Trans A 43, 1705–1723 (2012). https://doi.org/10.1007/s11661-011-1070-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1070-8

Keywords

Navigation