Skip to main content
Log in

Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study was aimed at characterizing microstructural change and evaluating tensile and fatigue properties of fiber laser welded AZ31B-H24 Mg alloy with special attention to the effect of welding speed. Laser welding led to the formation of equiaxed dendrites in the fusion zone and columnar dendrites near the fusion zone boundary along with divorced eutectic Mg17Al12 particles and recrystallized grains in the heat-affected zone. The lowest hardness across the weld appeared in the fusion zone. Although the yield strength, ductility, and fatigue life decreased, the hardening capacity increased after laser welding, with a joint efficiency reaching about 90 pct. A higher welding speed resulted in a narrower fusion zone, smaller grain size, higher yield strength, and longer fatigue life, as well as a slightly lower strain-hardening capacity mainly because of the smaller grain sizes. Tensile fracture occurred in the fusion zone, whereas fatigue failure appeared essentially in between the heat-affected zone and the fusion zone. Fatigue cracks initiated from the near-surface welding defects and propagated by the formation of fatigue striations together with secondary cracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. T.M. Pollock: Science, 2010, vol. 328, pp. 986−87.

    Article  CAS  Google Scholar 

  2. M. Wise, K. Calvin, A. Thomson, L. Clarke, B. Bond-Lamberty, R. Sands, S.J. Smith, A. Janetos, and J. Edmonds: Science, 2009, vol. 324, pp. 1183−86.

    Article  CAS  Google Scholar 

  3. L.R. Kump: Nature, 2002, vol. 419, pp. 188−90.

    Article  CAS  Google Scholar 

  4. W.G. Agnew: Science, 1974, vol. 183, pp. 254−56.

    Article  CAS  Google Scholar 

  5. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Int. J. Fatigue, 2009, vol. 31, pp. 726−35.

    Article  CAS  Google Scholar 

  6. S. Begum, D.L. Chen, S. Xu, and A.A. Luo: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 3014−26.

    Article  CAS  Google Scholar 

  7. K. Behler, J. Berkmanns, and A. Ehrhardt: Mater. Des., 1997, vol. 18, p. 261.

    Article  CAS  Google Scholar 

  8. E. Schubert, M. Klassen, and I. Zerner: J. Mater. Process. Technol., 2001, vol. 115, p. 2.

    Article  Google Scholar 

  9. X. Cao, M. Jahazi, J.P. Immarigeon, and W. Wallace: J. Mater. Process. Technol., 2006, vol. 171, pp. 188−204.

    Article  CAS  Google Scholar 

  10. A. Weisheit, R. Galun, and B.L. Mordike: Weld. J., 1998, vol. 77, pp. 149−54.

    Google Scholar 

  11. H. Zhao and T. DebRoy: Weld. J., 2001, vol. 80, pp. 204−10.

    Google Scholar 

  12. Z. Sun, D. Pan, and J. Wei: Sci. Technol. Weld. Joining, 2002, vol. 7, pp. 343−51.

    Article  CAS  Google Scholar 

  13. L. Quintino, A. Costa, R. Miranda, D. Yapp, V. Kumar, and C.J. Kong: Mater. Des., 2007, vol. 28, no. 4, pp. 1231−37.

    Article  CAS  Google Scholar 

  14. Y. Sakai, K. Nakata, T. Tsumura, M. Ueda, T. Ueyama, and K. Akamatsu: Mater. Sci. Forum, 2008, vols. 580−582, pp. 479−82.

  15. J. Liu, J.H. Dong, and K. Shinozaki: Mater. Sci. Forum, 2009, vols. 610−613, pp. 911−14.

  16. L. Yu, K. Nakata, and J. Liao: Sci. Technol. Weld. Joining, 2009, vol. 14, pp. 554−58.

    Article  CAS  Google Scholar 

  17. S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1974−89.

    Article  Google Scholar 

  18. G.F. Vander Voort: Metallography Principles and Practice, ASM International, Materials Park, OH, 1999.

  19. ASTM Standard E8/E8M: Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, West Conshohohocken, PA, 2008.

  20. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi: Mater. Sci. Eng. A, 2008, vol. 472, pp. 179−86.

    Article  Google Scholar 

  21. L.M. Liu, G. Song, and M.L. Zhu: Metall. Mater. Trans. A, 2008, vol. 39, pp. 1702−11.

    Article  Google Scholar 

  22. S.M. Chowdhury, D.L. Chen, S.D. Bhole, X. Cao, E. Powidajko, D.C. Weckman, and Y. Zhou: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2951−61.

    Article  Google Scholar 

  23. L. Xiao, L. Liu, D.L. Chen, S. Esmaeili, and Y. Zhou: Mater. Sci. Eng. A, 2011, vol. 529, pp. 81−87.

    Article  CAS  Google Scholar 

  24. D. Gery, H. Long, and P. Maropoulos: J. Mater. Process. Technol., 2005, vol. 167, pp. 393−401.

    Article  CAS  Google Scholar 

  25. N. Kishore Babu and M. Ashfaq: Pract. Metall., 2010, vol. 47, no. 8, pp. 426−42.

    Google Scholar 

  26. C.H. Fan, Z.H. Chen, W.Q. He, J.H. Chen, and D. Chen: J. Alloys Compd., 2010, vol. 504, no. 2, pp. L42−45.

    Article  CAS  Google Scholar 

  27. H.W. Wang, B. Li, J.C. Jie, and Z.J. Wei: Mater. Des., 2011, in press.

  28. Y.H. Xiong, A.M. Yang, P.J. Li, and L. Liu: J. Aero. Mater., 2001, vol. 21, no. 4, pp. 5−8.

    CAS  Google Scholar 

  29. I. Gilath, J.M. Signamarcheix, and P. Bensussan: J. Mater. Sci., 1994, vol. 29, pp. 3358−62.

    Article  CAS  Google Scholar 

  30. Y.J. Quan, Z.H. Chen, X.S. Gong, and Z.H. Yu: Mater. Charact., 2008, vol. 59, pp. 1491−97.

    Article  CAS  Google Scholar 

  31. S. Kou: Welding Metallurgy, 2nd ed., Wiley, New York, NY, 2003.

  32. L. Xiao, L. Liu, Y. Zhou, and S. Esmaeili: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1511−22.

    Article  CAS  Google Scholar 

  33. M.S. Turhal and T.S. Kan: J. Mater. Sci., 2003, vol. 38, pp. 2639−46.

    Article  CAS  Google Scholar 

  34. M. Pareek, A. Polar, F. Rumiche, and J.E. Indacochea: J. Mater. Eng. Perform., 2007, vol. 16, pp. 655−62.

    Article  CAS  Google Scholar 

  35. R.C. Zeng, W. Dietzel, R. Zettler, J. Chen, and K.U. Kainer: Trans. Nonferrous Met. Soc. China, 2008, vol. 18, pp. S76−80.

    Article  CAS  Google Scholar 

  36. G. Padmanaban, V. Balasubramanian, and J.K. Sarin Sundar: J. Mater. Eng. Perform., 2010, vol. 19, no. 2, pp. 155−65.

    Article  CAS  Google Scholar 

  37. X.Z. Lin and D.L. Chen: J. Mater. Eng. Perform., 2008, vol. 17, pp. 894−901.

    Article  CAS  Google Scholar 

  38. J.A. Del Valle and O.A. Ruano: Scripta Mater., 2006, vol. 55, pp. 775−78.

    Article  CAS  Google Scholar 

  39. S.H.C. Park, Y.S. Sato, and H. Kokawa: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 987−94.

    Article  CAS  Google Scholar 

  40. N. Afrin, D.L. Chen, X. Cao, and M. Jahazi: Scripta Mater., 2007, vol. 57, pp. 1004−07.

    Article  CAS  Google Scholar 

  41. W.D. Callister Jr.: Materials Science and Engineering - An Introduction, 8th ed., Wiley, New York, NY, 2010.

  42. J. Luo, Z. Mei, W. Tian, and Z. Wang: Mater. Sci. Eng. A, 2006, vol. 441, pp. 282−90.

    Article  Google Scholar 

  43. J.H. Hollomon: Trans. AIME., 1945, vol. 162, pp. 268−89.

    Google Scholar 

  44. X.H. Chen and L. Lu: Scripta Mater., 2007, vol. 57, pp. 133−36.

    Article  CAS  Google Scholar 

  45. P. Ludwik: Elemente der Technologischen Mechanik, Springer-Verlag OHG, Berlin, Germany, 1909, p. 32.

  46. U.F. Kocks and H. Mecking: Progr. Mater. Sci., 2003, vol. 48, pp. 171−273.

    Article  CAS  Google Scholar 

  47. J.A. Del Valle, F. Carreno, and O.A. Ruano: Acta Mater., 2006, vol. 54, pp. 4247−59.

    Article  CAS  Google Scholar 

  48. C.W. Sinclair, W.J. Poole, and Y. Brechet: Scripta Mater., 2006, vol. 55, pp. 739−42.

    Article  CAS  Google Scholar 

  49. I. Kovacs, N.Q. Chinh, and E. Kovacs-Csetenyi: Phys. Stat. Sol. A, 2002, vol. 194, pp. 3−18.

    Article  CAS  Google Scholar 

  50. J. Balik, P. Lukac, Z. Drozd, and R. Kuzel: Int. J. Mater. Res., 2009, vol. 100, no. 3, pp. 322−25.

    Article  CAS  Google Scholar 

  51. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, Columbus, OH, 1986.

  52. G. Padmanaban and V. Balasubramanian: Mater. Des., 2010, vol. 31, pp. 3724−32.

    Article  CAS  Google Scholar 

  53. L.D. Scintilla, L. Tricarico, M. Brandizzib, and A.A. Satrianoc: J. Mater. Process. Technol., 2010, vol. 210, pp. 2206−14.

    Article  CAS  Google Scholar 

  54. Y. Yu, C. Wang, X. Hu, J. Wang, and S. Yu: J. Mech. Sci. Technol., 2010, vol. 24, pp. 1077−82.

    Article  CAS  Google Scholar 

  55. K.S. Chan, Y.M. Pan, D.L. Davidson, and R.C. McClung: Mater. Sci. Eng. A, 1997, vol. 222, pp. 1−8.

    Article  Google Scholar 

  56. C. Laird: Fatigue Crack Propagation, ASTM STP 415, 1967, pp. 131−68.

Download references

Acknowledgments

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and AUTO21 Network of Centers of Excellence for providing financial support. This investigation involves part of Canada-China-USA Collaborative Research Project on the Magnesium Front End Research and Development. The authors also thank General Motors Research and Development Center for supplying the test materials, and IPG Photonics Applications Lab, Novi, MI for making and supplying the fiber laser welded joints. One of the authors (D.L. Chen) is grateful for the financial support by the Premier’s Research Excellence Award (PREA), NSERC-Discovery Accelerator Supplement (DAS) Award, Canada Foundation for Innovation (CFI), and Ryerson Research Chair (RRC) program. The assistance of Q. Li, A. Machin, J. Amankrah, D. Ostrom and R. Churaman (Ryerson University) in performing the experiments is gratefully acknowledged. The authors also thank Dr. X. Cao, Dr. S. Xu, Dr. K. Sadayappan, Dr. J. Jackman, Professor N. Atalla, Professor S. Lambert, Professor H. Jahed, Professor Y.S. Yang, Professor J. Allison, Professor M.F. Horstemeyer, Professor B. Jordon, Dr. A.A. Luo, Mr. R. Osborne, Mr. J.F. Quinn, Dr. X.M. Su, and Mr. L. Zhang for their helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Chen.

Additional information

Manuscript submitted June 7, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chowdhury, S.H., Chen, D.L., Bhole, S.D. et al. Fiber Laser Welded AZ31 Magnesium Alloy: The Effect of Welding Speed on Microstructure and Mechanical Properties. Metall Mater Trans A 43, 2133–2147 (2012). https://doi.org/10.1007/s11661-011-1042-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1042-z

Keywords

Navigation