Skip to main content
Log in

Microstructure Evolution during Supersolvus Heat Treatment of a Powder Metallurgy Nickel-Base Superalloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Microstructure evolution during the supersolvus heat treatment of a powder-metallurgy, low-solvus, high-refractory (LSHR) superalloy was established. For this purpose, three lots of LSHR with varying initial carbon/boron composition and thermomechanical history were subjected to a series of short-time (induction) and long-time (furnace) heat treatments followed by scanning electron microscopy/electron backscatter diffraction and quantitative metallography. The size of the (pinned) gamma grains exhibited a limited dependence on heating rate and soak time at peak temperature, and it was generally smaller than the predictions based on the classic Smith-Zener model. The differences were rationalized in terms of stereological and pinning-particle location effects. Observations of limited coarsening of the carbide/boride pinning particles were interpreted in the context of prior experimental observations and a modified Lifshitz-Slyosov-Wagner model applied previously for the coarsening of compound phases in steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The shape factor σ for a lognormal distribution is related to the ratio of the standard deviation sx and the mean \( < s > \) of the distribution by the relation \( {\text{s}_{x}}/ < s > = \sqrt {\mathop e\nolimits^{{\sigma^{2} }} - 1} \).

References

  1. R.M. Forbes Jones and L.A. Jackman: JOM, 1999, vol. 51, no. 1, pp. 27–31.

    Article  Google Scholar 

  2. M.J. Donachie Jr., Ed., Superalloys Source Book, ASM International, Materials Park, OH, 1984.

  3. T.P. Gabb, J. Gayda, and J. Falsey: Report NASA/TM-2005-213649, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, 2005, http://gltrs.grc.nasa.gov.

  4. D.D. Krueger, R.D. Kissinger, R.G. Menzies, and C.S. Wukusick: US Patent 4,957,567, 1990.

  5. E.L. Raymond, R.D. Kissinger, A.J. Paxson, and E.S. Huron: US Patent 5,584,947, 1996.

  6. E.S. Huron, J.A. Heaney, D.P. Mourer, J.R. Groh, E.L. Raymond, D.A. Utah, M.J. Weimer, and K.R. Bain: US Patent Application 2009/0000706 A1, 2009.

  7. C. Zener: Private Communication to C.S. Smith in Trans. AIME, 1948, vol. 175, pp. 15–51.

  8. J.W. Martin, R.D. Doherty, and B. Cantor: Stability of Microstructure in Metallic Systems, Cambridge University Press, Cambridge, UK, 1997.

    Book  Google Scholar 

  9. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–24.

    Article  CAS  Google Scholar 

  10. K. Song and M. Aindow: Mater. Sci. Eng. A, 2008, vol. A479, pp. 365–72.

    CAS  Google Scholar 

  11. E.J. Payton: Ph.D. Dissertation, The Ohio State University, Columbus, OH, 2009.

  12. C.R. Roberts: Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA, 2007.

  13. C.R. Roberts, S.L. Semiatin, and A.D. Rollett: Scripta Mater., 2007, vol. 56, pp. 899–902.

    Article  CAS  Google Scholar 

  14. S. Bjorklund, L.F. Donaghey, and M. Hillert: Acta Metall., 1972, vol. 20, pp. 867–74.

    Article  CAS  Google Scholar 

  15. S.K. Bhattacharyya and K.C. Russell: Metall. Trans., 1972, vol. 3, pp. 2195–99.

    Article  CAS  Google Scholar 

  16. J.E. Morral and G.R. Purdy: Scripta Metall. Mater., 1994, vol. 30, pp. 905–08.

    Article  CAS  Google Scholar 

  17. H.M. Lee, S.M. Allen, and M. Grujicic: Metall. Trans. A, 1991, vol. 22A, pp. 2863–68.

    CAS  Google Scholar 

  18. H.M. Lee and S.M. Allen: Metall. Trans. A, 1991, vol. 22A, pp. 2877–88.

    CAS  Google Scholar 

  19. P. Tao, C. Zhang, Z-G. Yang, and T. Hiroyuki: J. Iron Steel Res., Int., 2010, vol. 17, no. 5, pp, 74–78.

    Article  CAS  Google Scholar 

  20. K. Miyata, T. Omura, T. Kushida, and Y. Komizo: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1565–73.

    Article  CAS  Google Scholar 

  21. A. Gustafson: Mater. Sci. Eng. A, 2000, vol. A287, pp. 52–58.

    CAS  Google Scholar 

  22. D. Ramakrishna and S.P. Gupta: Mater. Sci. Eng., 1987, vol. 92, pp. 179–91.

    Article  CAS  Google Scholar 

  23. S. Ghosh: Scripta Mater., 2010, vol. 63, pp. 273–76.

    Article  CAS  Google Scholar 

  24. J. Gayda, T.P. Gabb, and P.T. Kantzos: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 323–30.

  25. J. Lemsky: Report NASA/CR-2005-213574, Ladish Company, Inc., Cudahy, WI, 2005. http://gltrs.grc.nasa.gov.

  26. S.L. Semiatin and D.R. Barker: US Patent 5,447,580, 1995.

  27. J. Gayda, T.P. Gabb, and P.T. Kantzos: US Patent 6,660,110, 2003.

  28. G.F. Mathey: US Patent 5,312,497, 1994.

  29. S. Ganesh and R.G. Tolbert: US Patent 5,527,020, 1996.

  30. J. Lemsky: Ladish Co., Cudahy, WI, Unpublished research, 2006.

  31. M. Hillert: Acta Metall., 1965, vol. 13, pp. 227–38.

    Article  CAS  Google Scholar 

  32. D.J. Srolovitz, M.P. Anderson, and G.S. Grest: Acta Metall., 1984, vol. 32, pp. 793–802.

    Article  CAS  Google Scholar 

  33. D.J. Srolovitz, M.P. Anderson, G.S. Grest, and P.S. Sahni: Acta Metall., 1984, vol. 32, pp. 1429–38.

    Article  CAS  Google Scholar 

  34. E.S. Huron, R.L. Casey, M.F. Henry, and D.P. Mourer: Superalloys 1996, R.D. Kissinger, D.J. Deye, D.L. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Warrendale, PA, 1996, pp. 667–76.

  35. E.S. Huron, K.R. Bain, D.P. Mourer, J.J. Schirra, P.L. Reynolds, and E.E. Montero: Superalloys 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Warrendale, PA, 2004, pp. 73–81.

  36. E.J. Payton: Institut für Werkstoffe, Ruhr-Universität Bochum, Bochum, Germany, Unpublished research, 2011.

  37. J.C. Russ and R.T. DeHoff: Practical Stereology, Kluwer Academic/Plenum Publishers, New York, NY, 2000.

  38. T.P. Gabb and D.R. Miller: National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, Unpublished research, 2010.

  39. T.P. Gabb, J. Gayda, J. Telesman, and P.T. Kantzos: Report NASA/TM-2005-213645, National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH, 2005, http://gltrs.grc.nasa.gov.

  40. H-J. Jou: Report NASA/CR-2010-216748, QuesTek Innovations LLC, Evanston, IL, July 2010, http://gltrs.grc.nasa.gov.

  41. A.K. Koul and F.B. Pickering: Acta Metall., 1982, vol. 30, pp. 1303–08.

    Article  CAS  Google Scholar 

  42. P.R. Rios: Acta Metall., 1987, vol. 35, pp. 2805–14.

    Article  CAS  Google Scholar 

  43. H.A. Calderon, P.W. Voorhees, J.L. Murray, and G. Kostorz: Acta Metall. Mater., 1994, vol. 42, pp. 991–1000.

    Article  CAS  Google Scholar 

  44. D.S. Berry: J. Appl. Phys., 1973, vol. 44, pp. 3792–93.

    Article  CAS  Google Scholar 

  45. M.S.A. Karunaratne, D.C. Cox, P. Carter, and R.C. Reed: Superalloys 2000, T.M. Pollock, R.D. Kisssinger, R.R. Bowman, K.A. Green, M. Mclean, S. Olson, and J.J. Schirra, eds., TMS, Warrendale, PA, 2000, pp. 263–72.

  46. R.V. Patil and G.B. Kale: J. Nucl. Mater., 1996, vol. 230, pp. 57–60.

    Article  CAS  Google Scholar 

  47. G. Miyamoto, J.C. Oh, K. Hono, T. Furuhara, and T. Maki: Acta Mater., 2007, vol. 55, pp. 5027–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was conducted as part of the in-house research of the Metals Branch of the Air Force Research Laboratory’s Materials and Manufacturing Directorate. The support and encouragement of the Laboratory management are gratefully acknowledged. The assistance of P.N. Fagin and T.M. Brown in conducting the experiments is appreciated. Technical discussions with J. Gayda and J. Telesman (NASA GRC) are also much appreciated. Two authors (A.D.R. and C.G.R.) also acknowledge support from the Air Force STW-21 Initiative, Contract F33615-01-2-5225, and the MRSEC at Carnegie Mellon University, NSF Grant Number DMR-0520425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Semiatin.

Additional information

Manuscript submitted July 5, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semiatin, S.L., McClary, K.E., Rollett, A.D. et al. Microstructure Evolution during Supersolvus Heat Treatment of a Powder Metallurgy Nickel-Base Superalloy. Metall Mater Trans A 43, 1649–1661 (2012). https://doi.org/10.1007/s11661-011-1035-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1035-y

Keywords

Navigation