Skip to main content
Log in

Evaluation by the Double Loop Electrochemical Potentiokinetic Reactivation Test of Aged Ferritic Stainless Steel Intergranular Corrosion Susceptibility

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An experimental design method was used to determine the effect of factors that significantly affect the response of the double loop–electrochemical potentiokinetic reactivation (DL-EPR) test in controlling the susceptibility to intergranular corrosion (IGC) of UNS S43000 (AISI 430) ferritic stainless steel. The test response is expressed in terms of the reactivation/activation current ratio (I r /I a pct). Test results analysed by the analysis of variance (ANOVA) method show that the molarity of the H2SO4 electrolyte and the potential scanning rate have a more significant effect on the DL-EPR test response than the temperature and the depassivator agent concentration. On the basis of these results, a study was conducted in order to determine the optimal operating conditions of the test as a nondestructive technique for evaluating IGC resistance of ferritic stainless steel components. Three different heat treatments are considered in this study: solution annealing (nonsensitized), aging during 3 hours at 773 K (500 °C) (slightly sensitized), and aging during 2 hours at 873 K (600 °C) (highly sensitized). The aim is to find the operating conditions that simultaneously ensure the selectivity of the attack (intergranular and chromium depleted zone) and are able to detect the effect of low dechromization. It is found that a potential scanning rate of 2.5 mV/s in an electrolyte composed of H2SO4 3 M solution without depassivator, at a temperature around 293 K (20 °C), is the optimal operating condition for the DL-EPR test. Using this condition, it is possible to assess the degree of sensitization (DOS) to the IGC of products manufactured in ferritic stainless steels rapidly, reliably, and quantitatively. A time–temperature–start of sensitization (TTS) diagram for the UNS S43000 (France Inox, Villepinte, France) stainless steel was obtained with acceptable accuracy by this method when the IGC sensitization criterion was set to I r /I a  > 1 pct. This diagram is in good agreement with the time–temperature–start of precipitation (TTP) diagram that delineates the domain of low dechromization consecutive to chromium carbide precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. B. Baroux: Les Aciers Inoxydables, Editions de Physique, 1990, pp. 519–49.

  2. J.B. Lee: Corrosion-Nace, 1986, vol. 42 (2), pp. 106–10.

    CAS  Google Scholar 

  3. S. Frangini and A. Mignone: Corrosion, 1992, vol. 48 (9), pp. 715–26.

    Article  CAS  Google Scholar 

  4. M. Colombie, A. Condylis, A. Desestret, R. Grand, and R. Mayoud: Rev. Metall. (Paris) Pt. 1, 1973, vol. 70, p. 949.

    Google Scholar 

  5. NF EN ISO 3651-2, AFNOR, France, 1998.

  6. NF EN ISO 3651-1, AFNOR, France, 1998.

  7. N.J.E. Dowling, H. Kim, J.-N. Kim, S.-K. Ahn, and Y.-D. Lee: Corrosion, 1992, vol. 55 (8), pp. 743–55.

    Article  Google Scholar 

  8. T. Amadou, C. Braham, and H. Sidhom: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3499–3513.

    Article  CAS  Google Scholar 

  9. H. Sidhom, T. Amadou, H. Sahlaoui, and C. Braham: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1269–80.

    Article  CAS  ADS  Google Scholar 

  10. F. Mazaudier, G. Sanchez, and P. Fauvet: 3rd Eur. Conf. on Corrosion, Proc. Conf., CEFRACOR, Lyon, France, 1997, pp. p12-1–p12-6.

  11. P. Záhumenský, S. Tuleja, J. Országová, J. Janovec, and V. Siládiová: Corros. Sci., 1999, vol. 41, pp. 1305–22.

    Article  Google Scholar 

  12. Y.J. Oh, J.H. Yoon, and J.H. Hong: Corrosion, 2000, vol. 56 (3), pp. 289–97.

    Article  CAS  Google Scholar 

  13. S.J. Goodwin, B. Quayle, and F.W. Noble: Corros.-Nace, 1987, vol. 43 (12), pp. 743–47.

    CAS  Google Scholar 

  14. Z. Fang, Y.S. Wu, L. Zhang, and J.Q. Li: Corrosion, 1998, vol. 54 (5), pp. 339–46.

    Article  CAS  Google Scholar 

  15. U. Kamachi Mudali, R.K. Dayal, J.B. Gnanamoorthy, and P. Rodriguez: Metall. Mater. Trans. A, 1996, vol. 27 A, pp. 2881–87.

    Article  ADS  Google Scholar 

  16. M. Verneau and B. Bonnefois: 3rd Eur. Conf. on Corrosion, Proc. Conf., CEFRACOR, Lyon, France, 1997, pp. C5-1–C5-6.

  17. Y. Jun Oh and J. Hwa Hong: J. Nucl. Mater., 2000, vol. 278, pp. 242–50.

    Article  Google Scholar 

  18. D.N. Wasnik, V. Kain, I. Samajdar, B. Verlinden, and P.K. De: Acta Mater., 2002, vol. 50, pp. 4587–4601.

    Article  CAS  Google Scholar 

  19. Y. Cetre, P. Eichner, G. Sibaud, and J.M. Scarabello: 3rd Eur. Conf. on Corrosion, Proc. Conf., CEFRACOR, Lyon, France, 1997, pp. C4-1–C4-12.

  20. A.P. Majidi and M.A. Streicher : Corros.-Nace, 1984, vol. 40 (11), pp. 584–93.

    CAS  Google Scholar 

  21. C.C. Silva, J.P. S.E. Machado, A. V.C. Sobral-Santiago, H.B. de Sant’Ana, and J.P. Farias: J. Petrol. Sci. Eng., 2007, vol. 59, pp. 219–25.

    Article  CAS  Google Scholar 

  22. T. Luz, J.P. Farias, and P. Neto: Weld. Int., 2006, vol. 20 (12), pp. 959–64.

    Article  Google Scholar 

  23. A. Pardo, M.C. Merino, A.E. Coy, F. Viejo, M. Carboneras, and R. Arrabal: Acta Mater., 2007, vol. 55, pp. 2239–51.

    Article  CAS  Google Scholar 

  24. V.S. Moura, L.D. Lima, J.M. Pardal, A.Y. Kina, R.R.A. Corte, and S.S.M. Tavares: Mater. Characterization, 2008, vol. 59, pp. 1127–32.

    Article  CAS  Google Scholar 

  25. A.Y. Kina, V.M. Souza, S.S.M. Tavares, J.A. Souza, and H.F.G. de Abreu: J. Mater. Process. Technol., 2008, vol. 199, pp. 391–95.

    Article  CAS  Google Scholar 

  26. S.S.M. Tavares, J.S. Corte, C.A.B. Menezes, L. Menezes, V. Moura, and R.R.A. Corte: Eng. Failure Analysis, 2009, vol. 16, pp. 552–57.

    Article  CAS  Google Scholar 

  27. S.S.M. Tavares, V. Moura, V.C. da Costa, M.L.R. Ferreira, and J.M. Pardal: Mater. Characterization, 2009, vol. 60, pp. 573–78.

    Article  CAS  Google Scholar 

  28. A. Ben Rhouma: Ph.D. Thesis, University of Tunis el Manar, Tunisia, 2002.

  29. H. Sidhom: Ph.D. Thesis, University of Paris XI, Paris, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Braham.

Additional information

Manuscript submitted July 23, 2009.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sidhom, H., Amadou, T. & Braham, C. Evaluation by the Double Loop Electrochemical Potentiokinetic Reactivation Test of Aged Ferritic Stainless Steel Intergranular Corrosion Susceptibility. Metall Mater Trans A 41, 3136–3150 (2010). https://doi.org/10.1007/s11661-010-0383-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0383-3

Keywords

Navigation