Skip to main content
Log in

Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nonisothermal austenite grain growth kinetics under the influence of several combinations of Nb, Ti, and Mo containing complex precipitates has been studied in a microalloyed linepipe steel. The goal of this study is the development of a grain growth model to predict the austenite grain size in the weld heat affected zone (HAZ). Electron microscopy investigations of the as-received steel proved the presence of Ti-rich, Nb-rich, and Mo-rich precipitates. The steel has then been subjected to austenitizing heat treatments to selected peak temperatures at various heating rates that are typical for thermal cycles in the HAZ. Thermal cycles have a strong effect on the final austenite grain size. Using a mean field approach, a model is proposed for the dissolution of Nb-rich precipitates. This model has been coupled to a Zener-type austenite grain growth model in the presence of pinning particles. This coupling leads to accurate prediction of the austenite grain size along the nonisothermal heating path simulating selected thermal profiles of the HAZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., FEI Company, Hillsboro, OR.

References

  1. I. Nobuyuki, E. Shigeru and K. Joe: JFE Techn. Rep., 2006, vol. 1, pp. 20–26.

    Google Scholar 

  2. N.J. Grant: J. Met., 1983, vol. 35, pp. 20–27.

    Google Scholar 

  3. L.P. Zhang, C.L. Davis, and M. Strangwood: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2089–96.

    Article  CAS  Google Scholar 

  4. F. Hamad, L. Collins, and R. Volkers: Proc. 7th Int. Pipeline Conf. (IPC2008), ASME, Calgary, 2008, IPC2008-64097.

  5. J. Gao, R.G. Thompson, and B.R. Patterson: Acta Mater., 1997, vol. 45, pp. 3653–58.

    Article  CAS  Google Scholar 

  6. T. Gladman: The Physical Metallurgy of Microalloyed Steels, The Institute of Materials, London, 2002, pp. 137–84.

    Google Scholar 

  7. D.W. Tian, L.P. Karjalainen, B.N. Qian, and X.F. Chen: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 4031–38.

    Article  CAS  ADS  Google Scholar 

  8. P.A. Manohar, M. Ferry, and T. Chandra: ISIJ Int., 1998, vol. 38, pp. 913–24.

    Article  CAS  Google Scholar 

  9. M. Hillert: Acta Metall., 1988, vol. 36, pp. 3177–81.

    Article  CAS  Google Scholar 

  10. P.A. Manohar, D.P. Dunne, T. Chandra, and C.R. Killmore: ISIJ Int., 1996, vol. 36, pp. 194–200.

    Article  CAS  Google Scholar 

  11. T. Gladman: Proc. R. Soc. London, Ser. A, Mathemat. Phys. Sci., 1966, vol. 294, pp. 298–309.

    Article  CAS  ADS  Google Scholar 

  12. T. Gladman and F.B. Pickering: Iron Steel Inst. J., 1967, vol. 205, pp. 653–64.

    CAS  Google Scholar 

  13. J. Moon, J. Lee, and C. Lee: Mater. Sci. Eng. A, 2007, vol. 459A, pp. 40–46.

    Google Scholar 

  14. H.R. Wang and W. Wang: Mater. Sci. Technol., 2008, vol. 24, pp. 228–32.

    Article  CAS  Google Scholar 

  15. A. Yoshie, M. Fujioka, Y. Watanabe, K. Nishioka, and H. Morikawa: ISIJ Int., 1992, vol. 32, pp. 395–404.

    Article  CAS  Google Scholar 

  16. Y. Saito and C. Shiga: ISIJ Int., 1992, vol. 32, pp. 414–22.

    Article  CAS  Google Scholar 

  17. T. Senuma, M. Suehiro, and H. Yada: ISIJ Int., 1992, vol. 32, pp. 423–32.

    Article  CAS  Google Scholar 

  18. A. Giumelli, M. Militzer, and E.B. Hawbolt: ISIJ Int., 1999, vol. 39, pp. 271–80.

    Article  CAS  Google Scholar 

  19. S. Jiao, J. Penning, F. Leysen, Y. Houbaert, and E. Aernoudt: ISIJ Int., 2000, vol. 40, pp. 1035–40.

    Article  CAS  Google Scholar 

  20. L. Dao, J. Wang, Q. Liu, X. Sun, and J. Cao: J. Iron Steel Res. Int., 2010, vol. 17, pp. 62–66.

    Article  Google Scholar 

  21. S. Mishra and T. DebRoy: Mater. Sci. Technol., 2006, vol. 22, pp. 253–78.

    Article  CAS  Google Scholar 

  22. M. Militzer, E.B. Hawbolt, T.R. Meadowcroft, and A. Giumelli: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 3399–3409.

    Article  CAS  ADS  Google Scholar 

  23. A. Danon, C. Servant, A. Alamo, and J.C. Brachet: Mater. Sci. Eng. A, 2003, vol. 348A, pp. 122–32.

    Google Scholar 

  24. S.S. Sahay, C.P. Malhotra, and A.M. Kolkhede: Acta Mater., 2003, vol. 51, pp. 339–46.

    Article  CAS  Google Scholar 

  25. G.F. Vander Voort: Metallography: Principles and Practice, ASM INTERNATIONAL, Materials Park, OH, 1999, pp. 437–40.

    Google Scholar 

  26. G. Krauss: Steels: Heat Treatment and Processing Principles, ASM INTERNATIONAL, Materials Park, OH, 1989, pp. 188–97.

    Google Scholar 

  27. A. Sinha: Ferrous Physical Metallurgy, Butterworth Publishers, Stoneham, MA, 1989, pp. 574–77.

    Google Scholar 

  28. T. Gladman: Heat Treatment of Metals (UK), 1994, vol. 21, pp. 11–14.

    CAS  Google Scholar 

  29. C. Zener: private communication to C.S. Smith, Trans AIME, 1948, vol.175, pp. 15–51.

  30. P.R. Rios: Acta Metall., 1987, vol. 35, pp. 2805–14.

    Article  CAS  Google Scholar 

  31. www.thermocalc.com.

  32. C. Zener: J. Appl. Phys., 1949, vol. 20, pp. 950–53.

    Article  CAS  ADS  Google Scholar 

  33. M. Perez, M. Dumont, and D. Acevedo: Acta Mater., 2008, vol. 56, pp. 2119–32.

    Article  CAS  Google Scholar 

  34. M. Perez: Scripta Mater., 2005, vol. 52, pp. 709–12.

    Article  CAS  Google Scholar 

  35. B. Sparke, K.W. James, and G.M. Leak: J. Iron Steel Inst., 1965, vol. 203, pp. 152–53.

    Google Scholar 

  36. K.J. Irvine, F.B. Pickering, and T. Gladman: J. Iron Steel Inst. 1967, vol. 205, pp. 161–82.

    CAS  Google Scholar 

  37. S. Mishra and T. DebRoy: Acta Mater., 2004, vol. 52, pp. 1183–92.

    Article  CAS  Google Scholar 

  38. M. Toloui and M. Militzer: Int. J. Mater. Res., 2010, vol. 101, pp. 542–48.

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC), Evraz Inc. NA, and TransCanada Pipelines Ltd. for their financial support. We are also grateful to W.J. Poole for valuable discussions and suggestions. We thank H. Azizi-Alizamini, A. Meharwal, and M. Maalekian for their help with technical details of this work. One of the authors (MP) expresses his gratitude to Chad Sinclair and colleagues for their warm welcoming during a sabbatical stay at UBC from September 2008 to January 2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Militzer.

Additional information

Manuscript submitted March 29, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Banerjee, K., Militzer, M., Perez, M. et al. Nonisothermal Austenite Grain Growth Kinetics in a Microalloyed X80 Linepipe Steel. Metall Mater Trans A 41, 3161–3172 (2010). https://doi.org/10.1007/s11661-010-0376-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-010-0376-2

Keywords

Navigation