Skip to main content
Log in

Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the constitutive model for 7085-T7X (overaged) aluminum alloy plate samples with controlled microstructures was developed. Different lengths of 2nd step aging times produced samples with similar microstructure but different stress-strain curves (i.e., different nanostructure). A conventional phenomenological strain-hardening law with no strain gradient effects was proposed to capture the peculiar hardening behavior of the material samples investigated in this work. The classical Gurson–Tvergaard potential, which includes the influence of void volume fraction (VVF) on the plastic flow behavior, as well as an extension proposed by Leblond et al.,[3] were considered. Unlike the former, the latter is able to account for the influence of strain hardening on the VVF growth. All the constitutive coefficients used in this work were based on experimental stress-strain curves obtained in uniaxial tension and on micromechanical modeling results of a void embedded in a matrix. These material models were used in finite element (FE) simulations of a compact tension (CT) specimen. An engineering criterion based on the instability of plastic flow at a crack tip was used for the determination of plane strain toughness K Ic . The influence of the microstructure was lumped into a single state variable, the initial void volume fraction. The simulation results showed that the strain-hardening behavior has a significant influence on K Ic .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A.L. Gurson: J. Eng. Mater. Technol., 1977, vol. 99, pp. 2–15

    Google Scholar 

  2. V. Tvergaard: Int. J. Fract., 1981, vol. 17, pp. 389–406

    Article  Google Scholar 

  3. J.B. Leblond, G. Perrin, J. Devaux: Eur. J. Mech. A, Solids, 1995, vol. 14, pp. 499–527

    MATH  MathSciNet  Google Scholar 

  4. J.T. Staley: Materials Selection and Design, ASM, Materials Park, OH, 1997, pp. 381–89

    Google Scholar 

  5. R.T. Shuey and A.J. den Bakker: Advances in the Metallurgy of Aluminum Alloys, M. Tiryakioglu, ed., ASM INTERNATIONAL, Metals Park, OH, 2001, pp. 189–94

  6. J.T. Staley: Properties Related to Fracture Toughness, STP 605, ASTM, Philadelphia, PA, 1976, pp. 71–103

    Google Scholar 

  7. G.T. Hahn, A.R. Rosenfield: Metall. Trans. A, 1975, vol. 6A, pp. 653–70

    CAS  Google Scholar 

  8. P. Tanaka, C.A. Pampillo, and J.R. Low, Jr.: Review of Developments in Plane Strain Fracture Toughness Testing, ASTM Special Technical Publication No. 463, ASTM, Philadelphia, PA, 1970, pp. 191–215

  9. J.C.W. Van de Kasteele, D. Broek: Eng. Fract. Mech., 1977, vol. 9, pp. 625–35

    Article  Google Scholar 

  10. D. Broek: Eng. Fract. Mech., 1973, vol. 5, pp. 55–56

    Article  CAS  Google Scholar 

  11. R.T. Shuey, F. Barlat, M.E. Karabin, and D.J. Chakrabarti: Metall. Mater. Trans. A, 2009, vol. 40A, DOI 10.1007/s11661-008-9703-2

  12. G.T. Hahn and A.R. Rosenfield: Applications Related Phenomena in Titanium Alloys, ASTM Special Technical Publication No. 432, ASTM, Philadelphia, PA, 1968, pp. 5–32

  13. P.F. Thomason: Int. J. Fract. Mech., 1971, vol. 7, pp. 409–19

    Google Scholar 

  14. T.L. Anderson: Fracture Mechanics—Fundamental and Applications, CRC Press, Boca Raton, FL, 1995

    Google Scholar 

  15. E. Van der Giessen, A. Needleman: Annu. Rev. Mater. Res., 2002, vol. 32, pp. 141–62

    Article  Google Scholar 

  16. W. Brocks: in Continuum Scale Simulation of Engineering Materials–Fundamentals–Microstructures–Process Applications, D. Raabe, F. Roters, F. Barlat, L.-Q. Chen, eds., Wiley-VCH Verlag GmbH, Berlin, 2004, pp. 621–37

    Chapter  Google Scholar 

  17. D. Steglich: in Continuum Scale Simulation of Engineering Materials–Fundamentals–Microstructures–Process Applications, D. Raabe, F. Roters, F. Barlat, L.-Q. Chen, eds., Wiley-VCH Verlag GmbH, Berlin, 2004, pp. 817–28

    Chapter  Google Scholar 

  18. T. Pardoen, Y. Brechet: Philos. Mag., 2004, vol. 84, pp. 269–97

    Article  ADS  CAS  Google Scholar 

  19. T. Pardoen, J.W. Hutchinson: Acta Mater., 2003, vol. 51, pp. 133–48

    Article  CAS  Google Scholar 

  20. R.M. McMeeking: J. Mech. Phys. Solids, 1977, vol. 25, pp. 357–81

    Article  CAS  Google Scholar 

  21. A. Needleman, V. Tvergaard: J. Mech. Phys. Solids, 1987, vol. 35, pp. 151–83

    Article  MATH  ADS  Google Scholar 

  22. T. Pardoen, J.W. Hutchinson: J. Mech. Phys. Solids, 1999, vol. 48, pp. 2467–512

    Article  Google Scholar 

  23. R. Becker, A. Needleman, S. Suresh, V. Tvergaard, A.K. Vasudévan: Acta Metall., 1989, vol. 37, pp. 99–120

    Article  CAS  Google Scholar 

  24. T. Pardoen, D. Dumont, A. Deschamp, Y. Brechet: J. Mech. Phys. Solids, 2003, vol. 51, pp. 637–65

    Article  MATH  ADS  CAS  Google Scholar 

  25. F.A. McClintock: J. Appl. Mech., 1968, vol. 35, pp. 363–71

    Google Scholar 

  26. J.R. Rice, D.M. Tracey: J. Mech. Phys. Solids, 1969, vol. 17, pp. 201–17

    Article  ADS  Google Scholar 

  27. A.C. Mackenzie, J.W. Hancock, D.K. Brown: Eng. Fract. Mech., 1977, vol. 9, pp. 167–88

    Article  CAS  Google Scholar 

  28. M.H. Porch, H.F. Fischmeister: Eng. Fract. Mech., 1992, vol. 43, pp. 581–88

    Article  Google Scholar 

  29. S. Jun: Eng. Fract. Mech., 1993, vol. 44, pp. 789–806

    Article  ADS  Google Scholar 

  30. M.R. Hill, T.L. Panontin: Eng. Fract. Mech., 2002, vol. 69, pp. 2163–2218

    Article  Google Scholar 

  31. D.M. Tracey: Eng Fract. Mech., 1971, vol. 3, pp. 301–15

    Article  Google Scholar 

  32. G. Perrin, J.-B. Leblond, and J. Devaux: ECF 8-Fracture Behaviour and Design of Materials and Structures, Engineering Materials Advisory Services Ltd., Torino, Italy, Oct. 1–5, 1990, vol. I, pp. 427–32

  33. R. Becker: J. Mech. Phys. Solids, 1987, vol. 35, pp. 577–99

    Article  ADS  Google Scholar 

  34. V. Tvergaard: Adv. Appl. Mech., 1990, vol. 27, pp. 83–147

    Article  MATH  Google Scholar 

  35. J. Faleskog, C.F. Shih: Int. J. Fract., 1997, vol. 89, pp. 355–73

    Article  Google Scholar 

  36. Z.H. Li, C. Wang, C.Y. Chen: Int. J. Plast., 2003, vol. 19, pp. 213–34

    Article  MATH  MathSciNet  Google Scholar 

  37. J. Koplik, A. Needleman: Int. J. Solids Struct., 1988, vol. 24, pp. 835–53

    Article  Google Scholar 

  38. ABAQUS, version 6.5, ABAQUS, Inc., Providence, RI, 2004

  39. J.-B. Leblond: Mécanique de la rupture fragile et ductile, Lavoisier, Paris, 2003

    MATH  Google Scholar 

  40. J.W. Hancock, M.J. Cowling: Met. Sci., 1980, vol. 14, pp. 293–304

    Article  Google Scholar 

  41. T. Ohira, T. Kishi: Mater. Sci. Eng., 1986, vol. 78, pp. 9–19

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Drs. Mark James and John Brockenbrough, Alcoa Technical Center, for their critical review of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Barlat.

Additional information

Manuscript submitted March 14, 2008.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karabin, M., Barlat, F. & Shuey, R. Finite Element Modeling of Plane Strain Toughness for 7085 Aluminum Alloy. Metall Mater Trans A 40, 354–364 (2009). https://doi.org/10.1007/s11661-008-9705-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-008-9705-0

Keywords

Navigation