Skip to main content
Log in

Effects of volume fraction of tempered martensite on dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of the volume fraction of tempered martensite on the tensile and dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure were investigated in this study. Five microstructures having various tempered-martensite volume fractions were obtained by varying heat-treatment conditions. Dynamic torsional tests were conducted on them using a torsional Kolsky bar. The test data were analyzed in relation to microstructures, tensile properties, and adiabatic shear-band formation. Under a dynamic loading condition, the maximum shear stress increased with increasing tempered-martensite volume fraction, whereas the fracture shear strain decreased. Observation of the deformed area after the dynamic torsional test indicated that a number of voids initiated mainly at α-phase/tempered-martensite interfaces, and that the number of voids increased with increasing martensite volume fraction. Adiabatic shear bands of 6 to 10 μm in width were formed in the specimens having lower martensite volume fractions, while they were not formed in those having higher martensite volume fractions. The possibility of adiabatic shear-band formation was explained by concepts of absorbed deformation energy and void initiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A. Greenfield and H. Margolin: Metall. Trans. A, 1972, vol. 3A, pp. 2649–59.

    Google Scholar 

  2. D. Eylon, J.A. Hall, C.M. Pierce, and D.L. Ruckel: Metall. Trans. A, 1976, vol. 7A, pp. 1817–26.

    CAS  Google Scholar 

  3. A. Gysler and G. Lutjering: Metall. Trans. A, 1982, vol. 13A, pp. 1435–43.

    Google Scholar 

  4. W. Lee and C. Lin: Mater. Sci. Eng., 1998, vol. A241, pp. 48–59.

    Article  Google Scholar 

  5. S.L. Semiatin and T.R. Bieler: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1871–75.

    Article  CAS  Google Scholar 

  6. D.-G. Lee, S. Lee, C.S. Lee, and S. Hur: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2541–48.

    Article  CAS  Google Scholar 

  7. S.P. Timothy and I.M. Hutchings: Acta Metall., 1985, vol. 33, pp. 667–76.

    Article  CAS  Google Scholar 

  8. H.T. Li, Y.M. Zhang, and D.Z. Yang: Mater. Sci. Eng., 2000, vol. A292, pp. 130–32.

    Article  Google Scholar 

  9. Q. Xue, M.A. Meyers, and V.F. Nesterenko: Acta Mater., 2002, vol. 50, pp. 575–96.

    Article  CAS  Google Scholar 

  10. D.-G. Lee, S. Lee, and C.S. Lee: Mater. Sci. Eng. A, 2004, vol. A366, pp. 25–37.

    Article  CAS  Google Scholar 

  11. M.-H. Lee, D.-J. Yoon, D.-H. Won, T.-S. Bae, and F. Watari: Met. Mater. Int., 2003, vol. 9, pp. 35–42.

    CAS  Google Scholar 

  12. F.S. Lin, E.A. Starke, Jr., S.B. Chakrabortty, and G. Gysler: Metall. Trans. A, 1984, vol. 15A, pp. 1229–46.

    CAS  Google Scholar 

  13. D.-G. Lee, S. Kim, S. Lee, and C.S. Lee: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 315–24.

    Article  CAS  Google Scholar 

  14. D.-G. Lee, Y.H. Lee, S. Lee, C.S. Lee, and S. Hur: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 719–24.

    Article  CAS  Google Scholar 

  15. D.G. Lee, Y.H. Lee, S. Lee, C.S. Lee, J.-H. Choi, and S. Hur: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3103–12.

    Article  CAS  Google Scholar 

  16. S.V. Kailas, Y.V.R.K. Prasad, and S.K. Biswas: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2173–79.

    Article  CAS  Google Scholar 

  17. M. Mier and A.K. Mukherjee: Scripta Metall., 1990, vol. 24, pp. 331–36.

    Article  Google Scholar 

  18. S. Yadav and K.T. Ramesh: Mater. Sci. Eng., 1995, vol. A203, pp. 140–53.

    Article  Google Scholar 

  19. Metals Handbook, 9th ed., ASM, Metals Park, OH, 1990, vol. 8, pp. 218–24.

  20. S.P. Timothy: Acta Metall., 1987, vol. 35, pp. 301–06.

    Article  CAS  Google Scholar 

  21. C.S. Kang, S.Y. Chang, and S.K. Hong: Met. Mater. Int., 2003, vol. 9, pp. 439–45.

    Article  Google Scholar 

  22. C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22–32.

    Article  Google Scholar 

  23. J.W. Hutchinson: Scripta Metall., 1984, vol. 18, pp. 421–22.

    Article  Google Scholar 

  24. H.A. Grebe, H.-R. Pak, and M.A. Meyers: Metall. Trans. A, 1985, vol. 16A, pp. 761–75.

    CAS  Google Scholar 

  25. I.A. Akmoulin, M. Niinomi, and T. Kobayashi: Metall. Trans. A, 1994, vol. 25A, pp. 1655–66.

    CAS  Google Scholar 

  26. S. Liao and J. Duffy: J. Mech. Phys. Solids, 1998, vol. 46, pp. 2201–31.

    Article  CAS  Google Scholar 

  27. S.P. Timothy and I.M. Hutchings: Acta Metall., 1985, vol. 33, pp. 667–76.

    Article  CAS  Google Scholar 

  28. Y. Me-Bar and D. Shechtman: Mater. Sci. Eng., 1983, vol. 58, pp. 181–88.

    Article  Google Scholar 

  29. M.A. Meyers and H.-R. Pak: Acta Metall., 1986, vol. 34, pp. 2493–99.

    Article  CAS  Google Scholar 

  30. M.C. Mataya, M.J. Carr, and G. Krauss: Metall. Trans. A, 1982, vol. 13A, pp. 1263–74.

    Google Scholar 

  31. M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Perez-Prado, and T.R. McNelley: Acta Mater., 2003, vol. 51, pp. 1307–25.

    Article  CAS  Google Scholar 

  32. K. Cho, S. Lee, S.R. Nutt, and J. Duffy: Acta Metall., 1993, vol. 41, pp. 923–32.

    Article  CAS  Google Scholar 

  33. H.J. McQueen: in Hot Deformation of Aluminum Alloys, T.G. Langdon, ed., TMS, Warrendale, PA, 1991, pp. 31–38.

    Google Scholar 

  34. M.E. Backman and W. Goldsmith: Int. J. Eng. Sci., 1978, vol. 16, pp. 1–99.

    Article  Google Scholar 

  35. C.L. Wittman, M.A. Meyers, and H.-R. Pak: Metall. Trans. A, 1990, vol. 21A, pp. 707–16.

    CAS  Google Scholar 

  36. K. Minnaar and M. Zhou: J. Mech. Phys. Solids, 1998, vol. 46, pp. 2155–70.

    Article  CAS  Google Scholar 

  37. M.A. Meyers and C.L. Wittman: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 3153–64.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

jointly appointed with the Materials Science and Engineering Department, Pohang University of Science and Technology

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, DG., Lee, Y.H., Lee, C.S. et al. Effects of volume fraction of tempered martensite on dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure. Metall Mater Trans A 36, 741–748 (2005). https://doi.org/10.1007/s11661-005-1005-3

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-1005-3

Keywords

Navigation