Skip to main content
Log in

Mechanical behavior of a cryomilled near-nanostructured Al-Mg-Sc alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, the mechanical behavior of a cryomilled Al-7.5 pct Mg-0.3 pct Sc alloy was investigated at temperatures in the range of 298 to 648 K. The grain size of the as-extruded alloy was determined to be approximately 200 nm by transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis. The data indicate that as a result of cryomilling, a supersaturated solid solution with high thermal stability was formed in the Al-Mg-Sc alloy. The high strength at room temperature was primarily attributed to three types of strengthening: grain size effect, solid solution hardening, and Orowan strengthening. The elevated temperature mechanical behavior of the Al-Mg-Sc alloy exhibits the following: (a) a strain-rate sensitivity, m, of less than 0.2; and (b) an activation energy, Q, that increases from 139 to 193 kJ/mol with increasing applied stress. An analysis of the experimental data at elevated temperatures shows that despite the fine-grained structure of the alloy, the deformation characteristics are not consistent with those arising from a superplastic deformation process that incorporates a threshold stress. On the other hand, the analysis suggests that the deformation characteristics agree with those associated with the transition in the creep behavior of Al-based solid solution alloys from that for the intermediate-stress region, where m=0.33 and Q=Q D (Q D is the activation energy for self-diffusion in Al), to that of the high-stress region, where m<0.2 and Q>Q D .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.L. Semiatin, K.V. Jata, M.D. Uchic, P.B. Berbon, D.E. Matejezyk, and C.C. Bampton: Scripta Mater., 2001, vol. 44, pp. 395–400.

    Article  CAS  Google Scholar 

  2. V.L. Tellkamp, A. Melmed, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2335–43.

    Article  CAS  Google Scholar 

  3. B.Q. Han, Z. Lee, S.R. Nutt, E.J. Lavernia, and F.A. Mohamed: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 603–13.

    CAS  Google Scholar 

  4. K.L. Kendig and D.B. Miracle: Acta Mater., 2002, vol. 50, pp. 4165–75.

    Article  CAS  Google Scholar 

  5. L.S. Toropova, D.G. Eskin, M.L. Kharakterova, and T.V. Dobatkina: Advanced Aluminum Alloys Containing Scandium: Structure and Properties, Gordon and Breach Science Publishers, 1998.

  6. R.R. Sawtell and C.L. Jensen: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 421–30.

    CAS  Google Scholar 

  7. F. Zhou, S.R. Nutt, C.C. Bampton, and E.J. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1985–92.

    Article  CAS  Google Scholar 

  8. T.G. Nieh, L.M. Hsiung, J. Wadsworth, and R. Kaibyshev: Acta Mater., 1998, vol. 46, pp. 2789–800.

    Article  CAS  Google Scholar 

  9. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633–40.

    Article  CAS  Google Scholar 

  10. T.G. Nieh, P.S. Gilman, and J. Wadsworth: Scripta Metall., 1985, vol. 19, pp. 1375–78.

    Article  CAS  Google Scholar 

  11. T.R. Bieler and A.K. Mukherjee: Mater. Sci. Eng., 1990, vol. A128, pp. 171–82.

    CAS  Google Scholar 

  12. K. Higashi, T. Okada, T. Mukai, S. Tanimura, T.G. Nieh, and J. Wadsworth: Scripta Metall. Mater., 1992, vol. 26, pp. 185–90.

    Article  CAS  Google Scholar 

  13. D.J. Skinner, M.S. Zedalis, and P. Gilman: Mater. Sci. Eng., 1989, vol. A119, pp. 81–86.

    CAS  Google Scholar 

  14. T. Hasegawa, T. Miura, T. Takahashi, and T. Yakou: Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 902–08.

    CAS  Google Scholar 

  15. W.C. Porr and R.P. Gangloff: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 365–79.

    CAS  Google Scholar 

  16. Z.M. Yin, Q.L. Pan, Y.H. Zhang, and F. Jiang: Mater. Sci. Eng., 2000, vol. A280, pp. 151–55.

    Article  CAS  Google Scholar 

  17. D.N. Seidman, E.A. Marquis, and D.C. Dunand: Acta Mater., 2002, vol. 50, pp. 4021–35.

    Article  CAS  Google Scholar 

  18. H.P. Klug and L. Alexander: X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed., John Wiley & Sons, New York, NY, 1974.

    Google Scholar 

  19. D.L. Zhang, T.B. Massalski, and M.R. Paruchuri: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 73–79.

    CAS  Google Scholar 

  20. C. Suryanarayana: Progr. Mater. Sci., 2001, vol. 46, pp. 1–184.

    Article  CAS  Google Scholar 

  21. F. Zhou, J. Lee, S. Dallek, and E.J. Lavernia: J. Mater. Res., 2001, vol. 16, pp. 3451–58.

    CAS  Google Scholar 

  22. H.R. Last and R.K. Garrett: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 737–45.

    CAS  Google Scholar 

  23. D. Hull and D.J. Bacon: Introduction to Dislocations, Pergamon Press, Oxford, UK, 1984.

    Google Scholar 

  24. T.S. Srivatsan, E.J. Lavernia, and F.A. Mohamed: Int. J. Powder Metall., 1990, vol. 26, pp. 321–34.

    CAS  Google Scholar 

  25. Metal Handbook, vol. 2, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, ASM INTERNATIONAL, Materials Park, OH, 1990.

  26. J.S. Benjamin and R.D. Schelleng: Metall. Trans. A, 1981, vol. 12A, pp. 1827–32.

    Google Scholar 

  27. Y.W. Kim and L.R. Bidwell: Scripta Metall., 1982, vol. 16, pp. 799–802.

    Article  Google Scholar 

  28. Y.-W. Kim, W.M. Griffith, and F.H. Froes: JOM, 1985, vol. 37, pp. 27–33.

    CAS  Google Scholar 

  29. Y.-W. Kim: in Dispersion Strengthened Aluminum Alloys, Y.-W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 157–80.

    Google Scholar 

  30. H. Riedel: Fracture at High Temperature, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  31. P.K. Chaudhury, K.T. Park, and F.A. Mohamed: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 2391–401.

    CAS  Google Scholar 

  32. F.A. Mohamed: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 261–78.

    CAS  Google Scholar 

  33. A. Yousefiani and F.A. Mohamed: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1653–63.

    Article  CAS  Google Scholar 

  34. F.A. Mohamed: Scripta Mater., 1998, vol. 38, pp. 457–63.

    Article  CAS  Google Scholar 

  35. F.A. Mohamed and T.G. Langdon: Acta Metall., 1974, vol. 22, pp. 779–88.

    Article  CAS  Google Scholar 

  36. W.R. Cannon and O.D. Sherby: Metall. Trans., 1970, vol. 1, pp. 1030–32.

    CAS  Google Scholar 

  37. F.A. Mohamed: Mater. Sci. Eng., 1979, vol. 38, pp. 73–80.

    Article  CAS  Google Scholar 

  38. P. Yavari and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 2181–96.

    Article  CAS  Google Scholar 

  39. K.L. Murty: Scripta Metall., 1973, vol. 7, p. 899.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, B.Q., Lavernia, E.J. & Mohamed, F.A. Mechanical behavior of a cryomilled near-nanostructured Al-Mg-Sc alloy. Metall Mater Trans A 36, 345–355 (2005). https://doi.org/10.1007/s11661-005-0307-9

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0307-9

Keywords

Navigation