Skip to main content
Log in

Modeling of oxide dispersions in reactively processed al

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present article reports on the formulation of an analytical model to predict the size scale of oxide dispersoids in Al alloys processed by a reactive atomization and consolidation synthesis approach. The proposed model formulation is primarily based on the assumption that all of the strain energy in the oxides is used to create interfaces between the oxide dispersoids and the matrix. The following predictions are made, based on the preceding analytical model. First, the diameter or thickness of oxide discs (the oxide dispersoids are assumed to have a disc geometry) constantly decreases with increasing strain. However, when exposed to the range of strain levels that are present in conventional processes (e.g., less than 100:1, 90 pct, and 90 pct of area, thickness, and height reduction ratio in extrusion, rolling, and forging, respectively), the oxide discs will fracture into sizes that are on the order of tens of nanometers in both diameter and thickness. Ultra-high strain levels (e.g., more than 18.5 of total strain) are required to obtain ultra-fine oxide discs whose diameter and thickness are on the order of nanometers. Second, working temperature appears to exert only limited influence on the final diameter or thickness of the oxide discs. The size scale of oxide dispersoids predicted on the basis of the analytical model presented herein is in good agreement with the available experimental observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.J. Lavernia and Y. Wu: Spray Atomization and Deposition, John Wiley & Sons Inc., New York, NY, 1996, pp. 7–9, 278–79, and 398–99.

    Google Scholar 

  2. P.S. Grant: Progr. Mater. Sci., 1995, vol. 39, pp. 497–545.

    Article  CAS  Google Scholar 

  3. S.L. Dai, J.-P. Delplanque, and E.J. Lavernia: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2597–2611.

    Article  CAS  Google Scholar 

  4. H. Liu, R.H. Rangel, and E.J. Lavernia: Acta Metall. Mater., 1994, vol. 42, pp. 3277–89.

    Article  CAS  Google Scholar 

  5. X. Zeng, H. Liu, M. Chu, and E.J. Lavernia: Metall. Trans. A, 1992, vol. 23A, pp. 3394–99.

    CAS  Google Scholar 

  6. X. Zeng, S. Nutt, and E.J. Lavernia: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 817–27.

    CAS  Google Scholar 

  7. F.J. Humphreys and J.W. Martin: Phil. Mag., 1968, vol. 17, pp. 365–80.

    CAS  Google Scholar 

  8. O. Preston and N.J. Grant: Trans. TMS-AIME, 1961, vol. 221, pp. 164–73.

    CAS  Google Scholar 

  9. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, United Kingdom, 1995, pp. 78, 146, 256, and 306.

    Google Scholar 

  10. Y.J. Lin, Y. Zhou, and E.J. Lavernia: J. Mater. Res., 2004, vol. 19, pp. 3090–98.

    Article  CAS  Google Scholar 

  11. Y.W. Kim, W.M. Griffith, and F.H. Froes: J. Met., 1985, vol. 37, pp. 27–33.

    CAS  Google Scholar 

  12. Y.J. Lin, Y. Zhou, and E.J. Lavernia: Metall. Mater. Trans. B, 2004, vol. 35B, pp. 1173–85.

    CAS  Google Scholar 

  13. Y.J. Lin, Y. Zhou, and E.J. Lavernia: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3265–73.

    Article  CAS  Google Scholar 

  14. G.W. Rowe: Elements of Metalworking Theory, Edward Arnold Ltd., London, 1979, pp. 23 and 37.

    Google Scholar 

  15. J.N. Harris: Mechanical Working of Metals, Pergamon Press Ltd., Oxford, United Kingdom, 1983, pp. 53, 86–87, and 98.

    Google Scholar 

  16. N.R. Bauld: Mechanics of Materials, Prindle, Weber & Schmidt Publisher, Boston, MA, 1986, pp. 54 and 567.

    Google Scholar 

  17. G.A. Roberts and R.A. Cary: Tool Steels, ASM, Materials Park, OH, 1980, pp. 633–40.

    Google Scholar 

  18. G.V. Samsonov: Oxide Handbook, C.N. Turton, and T.I. Turton, translators, IFI/Plenum Data Corporation, New York, NY, 1973, pp. 105–14 and 235–42.

    Google Scholar 

  19. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, Stanley Thorns (Publishers) Ltd., London, United Kingdom, 1992, p. 315.

    Google Scholar 

  20. J.R. Groza: in Nanostructured Materials, C.C. Koch, ed., Noyes Publications, Norwich, NY, 2002, pp. 125 and 155–57.

    Google Scholar 

  21. T.B. Massalski, H. Okamoto, P.R. Subramanian, and L. Kacprzak: Binary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1990, pp. 1–3542.

    Google Scholar 

  22. Y.V.R.K. Prasad and S. Sasidhara: Hot Working Guide, ASM INTERNATIONAL, Materials Park, OH, 1997, pp. 25–448.

    Google Scholar 

  23. M.I. Alymov, E.I. Maltina, and Y.N. Stepanov: Nanostr. Mater., 1994, vol. 4, pp. 737–42.

    Article  CAS  Google Scholar 

  24. S.L. Dai, J.-P. Delplanque, and E.J. Lavernia: J. Mater. Res., 1999, vol. 14, pp. 2814–23.

    CAS  Google Scholar 

  25. J.R. Davis: Aluminum and Aluminum Alloys, ASM INTERNATIONAL, Materials Park, OH, 1993, p. 494.

    Google Scholar 

  26. J.A.S. Tenorio and D.C.R. Espinosa: Oxid. Met., 2000, vol. 53, pp. 361–73.

    Article  CAS  Google Scholar 

  27. T.J. Carney, P. Tsakiropoulos, J.F. Watts, and J.E. Watts, and J.E. Castle: Int. J Rapid Solidification, 1990, vol. 5, pp. 189–217.

    CAS  Google Scholar 

  28. E.A. Brandes and G.B. Brook: Smithells Metals Reference Book, Butterworths-Heinemann, Oxford, United Kingdom, 1992, pp. 8–1, 8–2, 8–25, and 14–7.

    Google Scholar 

  29. R. Asthana: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 225–30.

    CAS  Google Scholar 

  30. G.V. Samsonov: Oxide Handbook, translated from Russian by C.N. Turton and T.I. Turton, IFI/Plenum Data Corporation, New York, NY, 1982, pp. 51, 173, 183, and 187–88.

    Google Scholar 

  31. J.R. Newby: Metals Handbook, 9th ed., ASM, Metals Park, OH, 1985, vol. 8, p. 23.

    Google Scholar 

  32. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  CAS  Google Scholar 

  33. V.M. Segal: Mater. Sci. Eng. A, 1995, vol. 197, pp. 157–64.

    Article  Google Scholar 

  34. J. Lee, F. Zhou, K.H. Chung, N.J. Kim, and E.J. Lavernia: Metall. Mater. Trans. A, 2001, vol. 32, pp. 3109–15.

    Article  Google Scholar 

  35. M.J. Luton, C.S. Jayanth, M.M. Disco, S. Matras, and J. Vallone: in Multicomponent Ultrafine Microstructures, L.E. McCandlish, B.H. Kear, D.K. Polk, and R.W. Siegel, eds., Materials Research Society, Pittsburgh, PA, 1989, pp. 79–86.

    Google Scholar 

  36. R.J. Perez, H.G. Jiang, C.P. Dogan, and E.J. Lavernia: Metall. Mater. Trans. A, 1998, vol. 29, pp. 2469–75.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, Y., Zhou, Y. & Lavernia, E.J. Modeling of oxide dispersions in reactively processed al. Metall Mater Trans A 36, 177–186 (2005). https://doi.org/10.1007/s11661-005-0150-z

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0150-z

Keywords

Navigation