Skip to main content
Log in

High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: Role of grain-boundary engineering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-cycle fatigue (HCF), involving the premature initiation and/or rapid propagation of cracks to failure due to high-frequency cyclic loading, remains a principal cause of failures in gas-turbine propulsion systems. In this work, we explore the feasibility of using “grain-boundary engineering” as a means to enhance the microstructural resistance to HCF. Specifically, sequential thermomechanical processing, involving alternate cycles of strain and annealing, was used to increase the fraction of “special” grain boundaries and to break up the interconnected network of “random” boundaries, in a commercial polycrystalline Ni-based superalloy (ME3). The effect of such grain-boundary engineering on the fatigue-crack-propagation behavior of large (∼8 to 20 mm), through-thickness cracks at 25 °C, 700 °C, and 800 °C was examined. Although there was little influence of an increased special boundary fraction at ambient temperatures, the resistance to near-threshold crack growth was definitively improved at elevated temperatures, with fatigue threshold stress intensities some 10 to 20 pct higher than at 25 °C, concomitant with a lower proportion (∼20 pct) of intergranular cracking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Report of the Ad Hoc Committee on Air Force Jet Engine Manufacturing and Production Processes, The Pentagon, United States Air Force Scientific Advisory Board, SAF/QQS, Washington, DC, 1992.

  2. B.A. Cowles: Int. J. Fract., 1996, vol. 80, pp. 147–63.

    Article  CAS  Google Scholar 

  3. Proc. 3rd, 4th, 5th and 6th Nat. Turbine Engine High Cycle Fatigue Conf., J. Henderson, ed., Universal Technology Corp., Dayton, OH, 1998–2001.

    Google Scholar 

  4. T. Nicholas and J.R. Zuiker: Int. J. Fract., 1996, vol. 80, pp. 219–35.

    Article  CAS  Google Scholar 

  5. R.O. Ritchie, D.L. Davidson, B.L. Boyce, J.P. Campbell, and O. Roder: Fatigue Fract. Eng. Mater. Struct., 1999, vol. 22, pp. 621–31.

    Article  CAS  Google Scholar 

  6. S.A. Padula, A. Shyam, R.O. Ritchie, and W.W. Milligan: Int. J. Fatigue, 1999, vol. 21, pp. 725–31.

    Article  CAS  Google Scholar 

  7. R.K. Nalla, B.L. Boyce, J.P. Campbell, J.O. Peters, and R.O. Ritchie: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 899–918.

    CAS  Google Scholar 

  8. A.E. Giannakopoulos, T.C. Lindley and S. Suresh: Acta Mater., 1998, vol. 46, pp. 2955–68.

    Article  CAS  Google Scholar 

  9. T. Watanabe: Res. Mech., 1984, vol. 11, pp. 47–84.

    CAS  Google Scholar 

  10. H. Grimmer, W. Bollmann, and D.H. Warrington: Acta Cryst. A, 1974, vol. 30A, pp. 197–207.

    Article  Google Scholar 

  11. D.G. Brandon, B. Ralph, S. Ranganathan, and M.S. Wald: Acta Metall., 1964, vol. 12, pp. 813–21.

    Article  Google Scholar 

  12. M. Kumar, A. Schwartz, and W. King: Acta Mater., 2002, vol. 50, pp. 2599–2612.

    Article  CAS  Google Scholar 

  13. B. Bennett and H. Pickering: Metall. Mater. Trans. A, 1987, vol. 18A, pp. 1117–24.

    CAS  Google Scholar 

  14. G. Palumbo and K.T. Aust: Scripta Metall., 1988, vol. 22, pp. 847–52.

    Article  CAS  Google Scholar 

  15. G. Palumbo and K.T. Aust: Acta Metall. Mater., 1990, vol. 38, pp. 2343–52.

    Article  CAS  Google Scholar 

  16. G. Palumbo, P.J. King, K.T. Aust, U. Erb, and P.C. Lichtenberger: Scripta Metall. Mater., 1991, vol. 25, pp. 1775–80.

    Article  CAS  Google Scholar 

  17. D.C. Crawford and G.S. Was: Metall. Trans. A, 1992, vol. 23A, pp. 1195–1206.

    CAS  Google Scholar 

  18. P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Scripta Metall. Mater., 1995, vol. 33, pp. 1387–92.

    Article  CAS  Google Scholar 

  19. G. Palumbo and K.T. Aust: Can. Metall. Q., 1995, vol. 34, pp. 165–73.

    Article  Google Scholar 

  20. E.M. Lehockey, G. Palumbo, P. Lin, and A.M. Brennenstuhl: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 387–96.

    Article  CAS  Google Scholar 

  21. J. Don and S. Majumdar: Acta Metall., 1986, vol. 34, pp. 961–67.

    Article  CAS  Google Scholar 

  22. D.P. Field and B.L. Adams: Acta Metall. Mater., 1992, vol. 40, pp. 1145–57.

    Article  CAS  Google Scholar 

  23. V. Thaveeprungsriporn and G.S. Was: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2101–12.

    Article  CAS  Google Scholar 

  24. E.M. Lehockey, G. Palumbo, P. Lin, and A.M. Brennenstuhl: Scripta Mater., 1997, vol. 36, pp. 1211–18.

    Article  CAS  Google Scholar 

  25. E.M. Lehockey, G. Palumbo, and P. Lin: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 3069–79.

    Article  CAS  Google Scholar 

  26. E. Nembach and G. Neite: Progr. Mater. Sci., 1985, vol. 29, pp. 177–319.

    Article  CAS  Google Scholar 

  27. T. Gabb, J. Telesman, P. Kantzos, and K. O’Connor: NASA TM-2002-211796, NASA, Washington, DC, 2002.

  28. Annual Book of ASTM Standards, E647, ASTM, West Conshohocken, PA, 2001.

  29. Annual Book of ASTM Standards, E399, ASTM, West Conshohocken, PA, 1997.

  30. M. Kumar, W. King, and A. Schwartz: Acta Mater., 2000, vol. 48, pp. 2081–91.

    Article  CAS  Google Scholar 

  31. A. Schwartz, M. Kumar, and W. King: MRS Symp. Proc., 2000, vol. 586, p. 3.

    CAS  Google Scholar 

  32. C.A. Schuh, M. Kumar, and W. King: Acta Mater., 2003, vol. 51, pp. 687–700.

    Article  CAS  Google Scholar 

  33. C.A. Schuh, M. Kumar, and W.E. King: Z. Metallkd., 2003, vol. 94, pp. 323–28.

    CAS  Google Scholar 

  34. Y. Gao, J.S. Stölken, M. Kumar, and R.O. Ritchie: Acta Mater., 2005, in review.

  35. R. Molins, G. Hochstetter, J.C. Chassaigne, and E. Andrieu: Acta Mater., 1997, vol. 45, pp. 663–74.

    Article  CAS  Google Scholar 

  36. B. Alexandreanu, B.H. Sencer, V. Thaveeprunsriporn, and G. Was: Acta Mater., 2003, vol. 51, pp. 3831–48.

    Article  CAS  Google Scholar 

  37. M. Kumar, K. Blobaum, J.S. Stölken, and R.W. Minich: unpublished research.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, Y., Ritchie, R.O., Kumar, M. et al. High-cycle fatigue of nickel-based superalloy ME3 at ambient and elevated temperatures: Role of grain-boundary engineering. Metall Mater Trans A 36, 3325–3333 (2005). https://doi.org/10.1007/s11661-005-0007-5

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-005-0007-5

Keywords

Navigation