Skip to main content

Advertisement

Log in

Evaluation of the bone mineral density in the Mexican female population using the Radiofrequency Echographic Multi Spectrometry (REMS) technology

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

The bone health status of a Mexican female population, including a cohort of 455 women aged over 40 years, was assessed by Radiofrequency Echographic Multi Spectrometry (REMS).

Purpose

Assessment of the bone health status in an average female Mexican population with REMS. The secondary objective investigated age- and body mass index (BMI)–related effects on the diagnostic classification and the influence of risk factors for osteoporosis.

Methods

Women aged over 40 years underwent a REMS scan at the lumbar spine and both femoral necks. The degree of correlation of the bone mineral density (BMD) across axial sites was assessed by the Pearson correlation coefficient (r), along with the diagnostic discordance. The association between risk factors, age, and BMI and diagnostic classification was determined by the chi-squared test.

Results

Four hundred seventy-one women were enrolled. Osteoporosis was diagnosed in 11.0%, 8.1%, and 8.3% of cases at the lumbar spine and right and left femoral neck, respectively. The diagnostic agreement between the lumbar spine and femoral necks was about 73% (85% considering a 0.3 T-score tolerance), whereas the agreement between the femoral necks was 97.4% (99.6% considering a 0.3 T-score tolerance). Most of discordant cases were minor discordances. The correlation between the lumbar spine and femoral neck was r = 0.82 and 0.85, respectively, whereas both femoral necks correlated with r = 0.97. As expected, the prevalence of osteoporosis increased with age and decreased as BMI increased.

Conclusion

The widespread applicability of the non-ionizing REMS technology has been demonstrated in a representative Mexican cohort, covering wide age and BMI ranges. Age and BMI variations correlate with the prevalence of osteoporosis, in line with the recent scientific literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cruz GI, Cisneros DF, Salazar PR, Tejeida LA (2002) Costos institucionales y dificultades en la atención de los pacientes con fracturas por osteoporosis. Acta Ortop Mex 16(6):292–295

    Google Scholar 

  2. Diagnóstico y tratamiento de osteoporosis en mujeres posmenopáusicas. Guía de Evidencias y Recomendaciones: Guía de Práctica Clínica. México, CENETEC; 2018.

  3. Clark FP, Carlos C, Barrera J, Guzman A, Maetzel P, Lavielle P et al (2008) Direct costs of osteoporosis and hip fracture: an analysis for the Mexican healthcare system. Osteoporos Int 19:269–276

    Article  CAS  PubMed  Google Scholar 

  4. Fuggle NR, Curtis EM, Ward KA, Harvey NC, Dennison EM, Cooper C (2019) Fracture prediction, imaging and screening in osteoporosis. Nat Rev Endocrinol 15(9):535–547. https://doi.org/10.1038/s41574-019-0220-8

    Article  PubMed  Google Scholar 

  5. El Maghraoui A, Achemlal L, Bezza A (2006) Monitoring of dual-energy X-ray absorptiometry measurement in clinical practice. J Clin Densitom 9(3):281–286. https://doi.org/10.1016/j.jocd.2006.03.014

    Article  PubMed  Google Scholar 

  6. Link TM, Kazakia G (2020) Update on imaging-based measurement of bone mineral density and quality. Curr Rheumatol Rep 22(5):13. https://doi.org/10.1007/s11926-020-00892-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41(1):138–154. https://doi.org/10.1016/j.bone.2007.02.022

    Article  CAS  PubMed  Google Scholar 

  8. Tothill P, Hannan WJ (2007) Precision and accuracy of measuring changes in bone mineral density by dual-energy X-ray absorptiometry. Osteoporos Int 18(11):1515–1523. https://doi.org/10.1007/s00198-007-0382-4

    Article  CAS  PubMed  Google Scholar 

  9. Messina C, Bandirali M, Sconfienza LM, D’Alonzo NK, Di Leo G, Papini GD, Ulivieri FM, Sardanelli F (2015) Prevalence and type of errors in dual-energy x-ray absorptiometry. Eur Radiol 25(5):1504–1511. https://doi.org/10.1007/s00330-014-3509-y

    Article  PubMed  Google Scholar 

  10. Albano D, Agnollitto PM, Petrini M, Biacca A, Ulivieri FM, Sconfienza LM, Messina C (2021) Operator-related errors and pitfalls in dual energy X-ray absorptiometry: how to recognize and avoid them. Acad Radiol 28(9):1272–1286. https://doi.org/10.1016/j.acra.2020.07.028

    Article  PubMed  Google Scholar 

  11. Diez-Perez A, Brandi ML, Al-Daghri N, Branco JC, Bruyère O, Cavalli L, Cooper C, Cortet B, Dawson-Hughes B, Dimai HP, Gonnelli S, Hadji P, Halbout P, Kaufman JM, Kurth A, Locquet M, Maggi S, Matijevic R, Reginster JY, Rizzoli R, Thierry T (2019) Radiofrequency Echographic Multi-Spectrometry for the in-vivo assessment of bone strength: state of the art-outcomes of an expert consensus meeting organized by the European Society for Clinical and Economic Aspects of Osteoporosis, Osteoarthritis and Musculoskeletal Diseases (ESCEO). Aging Clin Exp Res 31(10):1375–1389. https://doi.org/10.1007/s40520-019-01294-4

    Article  PubMed  PubMed Central  Google Scholar 

  12. De Marco T, Peccarisi M, Conversano F, Greco A, Chiozzi S, De Pascalis F et al (2016) A new approach for measuring the trabecular bone density through the echosound backscattering: an ex vivo validation on human femoral heads. Measurement 87:51–61

    Article  Google Scholar 

  13. Aventaggiato M, Conversano F, Pisani P, Casciaro E, Franchini R, Lay-Ekuakille A, et al. (2015) Validation of an automatic segmentation method to detect vertebral interfaces in ultrasound image. IET Sci:1–10.

  14. Pisani P, Greco, Conversano F, Renna MD, Casciaro E, Quarta L, Costanza D, Muratore M, Casciaro S (2017) A quantitative ultrasound approach to estimate bone fragility: a first comparison with dual X-ray absorptiometry. Measurement 101:243–249. https://doi.org/10.1016/j.measurement.2016.07.033.

  15. Tomai Pitinca MD, Fortini P, Gonnelli S, Caffarelli C (2021) Could Radiofrequency Echographic Multi-Spectrometry (REMS) overcome the limitations of BMD by DXA related to artifacts? A series of 3 cases. J Ultrasound Med 40(12):2773–2777. https://doi.org/10.1002/jum.15665

    Article  PubMed  Google Scholar 

  16. Di Paola M, Gatti D, Viapiana O, Cianferotti L, Cavalli L, Caffarelli C et al (2019) Radiofrequency Echographic Multispectrometry compared with dual X-ray absorptiometry for osteoporosis diagnosis on lumbar spine and femoral neck. Osteoporos Int 30(2):391–402

    Article  PubMed  Google Scholar 

  17. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Report of a WHO Study Group. World Health Organ Tech Rep Ser 843:1–129

  18. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-253.

  19. Clark P, Carlos F, Vázquez Martínez JL (2010) Epidemiology, costs and burden of osteoporosis in Mexico. Arch Osteoporos 5:9–17. https://doi.org/10.1007/s11657-010-0042-8

    Article  Google Scholar 

  20. Clark P, Cons-Molina F, Deleze M et al (2009) The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS). Osteoporos Int 20(2):275–282. https://doi.org/10.1007/s00198-008-0657-4

    Article  CAS  PubMed  Google Scholar 

  21. Aziziyeh R, Amin M, Habib M et al (2019) The burden of osteoporosis in four Latin American countries: Brazil, Mexico, Colombia, and Argentina. J Med Econ 22(7):638–644. https://doi.org/10.1080/13696998.2019.1590843

    Article  PubMed  Google Scholar 

  22. Barquera Cervera S, Campos-Nonato I, Rojas R, Rivera J (2010) Obesidad en México: epidemiología y políticas desalud para su control y prevención [Obesity in Mexico: epidemiology and health policies for its control and prevention]. Gac Med Mex 146(6):397–407

    PubMed  Google Scholar 

  23. Bojincă VC, Popescu CC, Decianu RD et al (2019) A novel quantitative method for estimating bone mineral density using B-mode ultrasound and radiofrequency signals-a pilot study on patients with rheumatoid arthritis. Exp Ther Med 18(3):1661–1668. https://doi.org/10.3892/etm.2019.7746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Khu A, Sumardi M (2020) A REMS scan-based report on relation between body mass index and osteoporosis in urban population of Medan at Royal Prima Hospital. Majalah Kedokteran Bandung 52:22–27. https://doi.org/10.15395/mkb.v52n1.1827

    Article  Google Scholar 

  25. Xiao Z, Tan Z, Shang J, et al. (2020) Sex-specific and age-specific characteristics of body composition and its effect on bone mineral density in adults in southern China: a cross-sectional study. BMJ Open. 10(4):e032268. Published 2020 Apr 19. https://doi.org/10.1136/bmjopen-2019-032268

  26. Huang D, Wang Y, Lv J, et al. (2020) Proteomic profiling analysis of postmenopausal osteoporosis and osteopenia identifies potential proteins associated with low bone mineral density. PeerJ 8:e9009. Published 2020 Apr 14. https://doi.org/10.7717/peerj.9009.

  27. Boschitsch EP, Durchschlag E, Dimai HP (2017) Age-related prevalence of osteoporosis and fragility fractures: real-world data from an Austrian Menopause and Osteoporosis Clinic. Climacteric 20(2):157–163. https://doi.org/10.1080/13697137.2017.1282452

    Article  CAS  PubMed  Google Scholar 

  28. Rao AD, Reddy S, Rao DS (2000) Is there a difference between right and left femoral bone density? J Clin Densitom 3(1):57–61. https://doi.org/10.1385/jcd:3:1:057

    Article  CAS  PubMed  Google Scholar 

  29. Mounach A, Rezqi A, Ghozlani I, Achemlal L, Bezza A, El Maghraoui A (2012) Prevalence and risk factors of discordance between left- and right-hip bone mineral density using DXA. ISRN Rheumatol 2012:617535. https://doi.org/10.5402/2012/617535

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lee J, Lee S, Jang S, Ryu OH (2013) Age-related changes in the prevalence of osteoporosis according to gender and skeletal site: the Korea National Health and Nutrition Examination Survey 2008–2010. Endocrinol Metab (Seoul) 28(3):180–191. https://doi.org/10.3803/EnM.2013.28.3.180

    Article  PubMed  Google Scholar 

  31. Woodson G (2000) Dual X-ray absorptiometry T-score concordance and discordance between the hip and spine measurement sites. J Clin Densitom 3(4):319–324. https://doi.org/10.1385/jcd:3:4:319

    Article  CAS  PubMed  Google Scholar 

  32. Moayyeri A, Soltani A, Tabari NK, Sadatsafavi M, Hossein-Neghad A, Larijani B (2005) Discordance in diagnosis of osteoporosis using spine and hip bone densitometry. BMC Endocr Disord. 5(1):3. Published 2005 Mar 11. https://doi.org/10.1186/1472-6823-5-3

  33. El Maghraoui A, Mouinga Abayi DA, Ghozlani I et al (2007) Prevalence and risk factors of discordance in diagnosis of osteoporosis using spine and hip bone densitometry. Ann Rheum Dis 66(2):271–272. https://doi.org/10.1136/ard.2006.062372

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mounach A, Abayi DA, Ghazi M et al (2009) Discordance between hip and spine bone mineral density measurement using DXA: prevalence and risk factors. Semin Arthritis Rheum 38(6):467–471. https://doi.org/10.1016/j.semarthrit.2008.04.001

    Article  CAS  PubMed  Google Scholar 

  35. Dey M, Bukhari M (2019) Predictors of fragility fracture and low bone mineral density in patients with a history of parental fracture. Osteoporos Sarcopenia 5(1):6–10. https://doi.org/10.1016/j.afos.2019.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  36. Office of the Surgeon General (US). Bone health and osteoporosis: a report of the surgeon general. Rockville (MD): Office of the Surgeon General (US); 2004. 8, Assessing the Risk of Bone Disease and Fracture. Available from: https://www.ncbi.nlm.nih.gov/books/NBK45525/

  37. Morin SN, Lix LM, Leslie WD (2014) The importance of previous fracture site on osteoporosis diagnosis and incident fractures in women. J Bone Miner Res 29(7):1675–1680. https://doi.org/10.1002/jbmr.2204

    Article  PubMed  Google Scholar 

  38. Choi HS, Park JH, Kim SH, Shin S, Park MJ (2017) Strong familial association of bone mineral density between parents and offspring: KNHANES 2008–2011. Osteoporos Int 28(3):955–964. https://doi.org/10.1007/s00198-016-3806-1

    Article  CAS  PubMed  Google Scholar 

  39. Kelly PJ, Eisman JA, Sambrook PN (1990) Interaction of genetic and environmental influences on peak bone density. Osteoporos Int 1(1):56–60. https://doi.org/10.1007/BF01880417

    Article  CAS  PubMed  Google Scholar 

  40. Goodman SB, Jiranek W, Petrow E, Yasko AW (2007) The effects of medications on bone. J Am Acad Orthop Surg 15(8):450–460. https://doi.org/10.5435/00124635-200708000-00002

    Article  PubMed  Google Scholar 

  41. Adami G, Arioli G, Bianchi G et al (2020) Radiofrequency Echographic Multi Spectrometry for the prediction of incident fragility fractures: a 5-year follow-up study. Bone 134:115297. https://doi.org/10.1016/j.bone.2020.115297

    Article  PubMed  Google Scholar 

  42. Cortet B, Dennison E, Diez-Perez A, Locquet M, Muratore M, Nogués X, Ovejero Crespo D, Quarta E, Brandi ML (2021) Radiofrequency Echographic Multi Spectrometry (REMS) for the diagnosis of osteoporosis in a European multicenter clinical context. Bone 143:115786. https://doi.org/10.1016/j.bone.2020.115786

    Article  PubMed  Google Scholar 

  43. Amorim DMR, Sakane EN, Maeda SS, Lazaretti Castro M. New technology REMS for bone evaluation compared to DXA in adult women for the osteoporosis diagnosis: a real-life experience. Arch Osteoporos;16(1):175. https://doi.org/10.1007/s11657-021-00990-x.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosales-Ortiz Sergio.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sergio, RO., Nayelli, R.G.E. Evaluation of the bone mineral density in the Mexican female population using the Radiofrequency Echographic Multi Spectrometry (REMS) technology. Arch Osteoporos 17, 43 (2022). https://doi.org/10.1007/s11657-022-01080-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-022-01080-2

Keywords

Navigation