Skip to main content

Advertisement

Log in

Dietary calcium, phosphorus, and osteosarcopenic adiposity in Korean adults aged 50 years and older

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

Calcium and phosphorus intake showed a significant negative relationship with osteosarcopenia and osteosarcopenic adiposity in Korean adults aged 50 years or older.

Purpose

Osteosarcopenic adiposity (OSA) is a syndrome accompanied by low bone mass, low muscle mass, and adiposity, and the association of the individual OSA components with dietary factors is considerable. The aim of this study was to investigate the association between the intake of dietary calcium and phosphorus and individual and/or combined bone-, muscle-, and fat mass-related abnormalities in body composition (components of OSA).

Methods

This study investigated the relationship between OSA-related components and the intake of calcium and phosphorus in subjects aged 50 years and older (n = 7007) using the Korea National Health and Nutrition Examination Survey (KNHANES) from 2008 to 2011.

Results

After adjusting for various confounding factors that affect OSA, the groups with a low calcium intake (below the median value) had a significantly higher risk of osteosarcopenia (OR = 1.768, 95% CI: 1.018–3.073; p = 0.0432) and OSA (OR = 1.505, 95% CI: 1.040–2.180; p = 0.0304) compared to the groups with a high calcium intake (equal to or above the median value). In addition, phosphorus intake showed a significant negative relationship with sarcopenic adiposity.

Conclusion

In conclusion, the intake of calcium is associated with a lower risk of osteosarcopenia and OSA in Korean adults aged 50 years and older. These results will serve as baseline data on mineral intake for the management of multiple OSA-related components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and material

Data used in this study are from the Korean CDC (https://knhanes.cdc.go.kr/knhanes/index.do).

References

  1. Kinsella K, Phillips DR (2005) Global aging: the challenge of success. Popul Bull 60:5–424

    Google Scholar 

  2. Newman AB, Lee JS, Visser M, Goodpaster BH, Kritchevsky SB, Tylavsky FA, Nevitt M, Harris TB (2005) Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study. Am J Clin Nutr 82:872–878. https://doi.org/10.1093/ajcn/82.4.872

    Article  CAS  PubMed  Google Scholar 

  3. Roth SM, Metter EJ, Ling S, Ferrucci L (2006) Inflammatory factors in age-related muscle wasting. Curr Opin Rheumatol 18:625–630. https://doi.org/10.1097/01.bor.0000245722.10136.6d

    Article  CAS  PubMed  Google Scholar 

  4. Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L (2008) Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care 11:693–700. https://doi.org/10.1097/MCO.0b013e328312c37d

    Article  PubMed  PubMed Central  Google Scholar 

  5. Roubenoff R (2004) Sarcopenic obesity: the confluence of two epidemics. Obes Res 12:887–888. https://doi.org/10.1038/oby.2004.107

    Article  PubMed  Google Scholar 

  6. Ilich JZ, Gilman JC, Cvijetic S, Boschiero D (2020) Chronic stress contributes to osteosarcopenic adiposity via inflammation and immune modulation: the case for more precise nutritional investigation. Nutrients 12:989. https://doi.org/10.3390/nu12040989

    Article  CAS  PubMed Central  Google Scholar 

  7. Perna S, Spadaccini D, Nichetti M, Avanzato I, Faliva MA, Rondanelli M (2018) Osteosarcopenic visceral obesity and osteosarcopenic subcutaneous obesity, two new phenotypes of sarcopenia: prevalence, metabolic profile, and risk factors. J Aging Res 2018:6147426. https://doi.org/10.1155/2018/6147426

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelly OJ, Gilman JC, Kim Y, Ilich JZ (2017) Macronutrient intake and distribution in the etiology, prevention and treatment of osteosarcopenic obesity. Curr Aging Sci 10:83–105. https://doi.org/10.2174/1874609809666160509122558

    Article  CAS  PubMed  Google Scholar 

  9. Kelly OJ, Gilman JC, Kim Y, Ilich JZ (2016) Micronutrient intake in the etiology prevention and treatment of osteosarcopenic obesity. Curr Aging Sci 9:260–278. https://doi.org/10.2174/1874609809666160509122001

    Article  CAS  PubMed  Google Scholar 

  10. Zemel MB, Shi H, Greer B, Dirienzo D, Zemel PC (2000) Regulation of adiposity by dietary calcium. FASEB J 14:1132–1138

    Article  CAS  Google Scholar 

  11. Beard JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131:568S-579S. https://doi.org/10.1093/jn/131.2.568S

    Article  CAS  PubMed  Google Scholar 

  12. Johnston CS (2005) Strategies for healthy weight loss: from vitamin C to the glycemic response. J Am Coll Nutr 24:158–165. https://doi.org/10.1080/07315724.2005.10719460

    Article  CAS  PubMed  Google Scholar 

  13. Hernandez C, Beaupre G, Carter D (2003) A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporos Int 14:843–847. https://doi.org/10.1007/s00198-003-1454-8

    Article  CAS  PubMed  Google Scholar 

  14. Gehlert S, Bloch W, Suhr F (2015) Ca2+-dependent regulations and signaling in skeletal muscle: from electro-mechanical coupling to adaptation. Int J Mol Sci 16:1066–1095. https://doi.org/10.3390/ijms16011066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ministry of Health and Welfare & Korea Centers for Disease Control and Prevention (2019) Korea Health Statistics 2018: Korea National Health and Nutrition Examination Survey (KNHANES VII-3). Korea Centers for Disease Control and Prevention, Cheongju

  16. Heaney RP (2012) Phosphorus. In: Erdman JW, MacDonald IA, Zeisel SH (eds) Present knowledge in nutrition. John Wiley & Sons, Washington, DC, pp 447–458

    Chapter  Google Scholar 

  17. Kweon S, Kim Y, Jang M, Kim Y, Kim K, Choi S, Chun C, Khang YH, Oh K (2014) Data resource profile: the Korea National Health and Nutrition Examination Survey (KNHANES). Int J Epidemiol 43:69–77. https://doi.org/10.1093/ije/dyt228

    Article  PubMed  PubMed Central  Google Scholar 

  18. World Health Organization (2000) The Asia-Pacific perspective: redefining obesity and its treatment. International Obesity Task Force, Brussels

    Google Scholar 

  19. Kanis JA (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis: synopsis of a WHO report. WHO Study Group Osteoporos Int 4:368–381. https://doi.org/10.1007/bf01622200

    Article  CAS  Google Scholar 

  20. Chen LK, Liu LK, Woo J et al (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15:95–101. https://doi.org/10.1016/j.jamda.2013.11.025

    Article  PubMed  Google Scholar 

  21. Kelly OJ, Gilman JC, Boschiero D, Ilich JZ (2019) Osteosarcopenic obesity: current knowledge, revised identification criteria and treatment principles. Nutrients 11:747. https://doi.org/10.3390/nu11040747

    Article  CAS  PubMed Central  Google Scholar 

  22. American Council on Exercise. Percent body fat norms for men and women. https://www.acefitness.org/education-and-resources/lifestyle/tools-calculators/percent-body-fat-calculator/. Accessed 15 February 2021

  23. Ministry of Health and Welfare & The Korean Nutrition Society & Korea Food & Drug Administration (2010) Dietary reference intakes for Koreans. The Korean Nutrition Society, Seoul

    Google Scholar 

  24. Ormsbee MJ, Prado CM, Ilich JZ, Purcell S, Siervo M, Folsom A, Panton L (2014) Osteosarcopenic obesity: the role of bone, muscle, and fat on health. J Cachexia Sarcopenia Muscle 5:183–192. https://doi.org/10.1007/s13539-014-0146-x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60. https://doi.org/10.1016/j.arr.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  26. Ilich JZ, Kelly OJ, Inglis JE (2016) Osteosarcopenic obesity syndrome: what is it and how can it be identified and diagnosed? Curr Gerontol Geriatr Res 2016:7325973. https://doi.org/10.1155/2016/7325973

    Article  PubMed  PubMed Central  Google Scholar 

  27. JafariNasabian P, Inglis JE, Kelly OJ, Ilich JZ (2017) Osteosarcopenic obesity in women: impact, prevalence, and management challenges. Int J Women Health 9:33–42. https://doi.org/10.2147/IJWH.S106107

    Article  Google Scholar 

  28. Kim J, Lee Y, Kye S, Chung YS, Kim JH, Chon D, Lee KE (2017) Diet quality and osteosarcopenic obesity in community-dwelling adults 50 years and older. Maturitas 104:73–79. https://doi.org/10.1016/j.maturitas.2017.08.007

    Article  PubMed  Google Scholar 

  29. Park S, Na W, Sohn C (2018) Relationship between osteosarcopenic obesity and dietary inflammatory index in postmenopausal Korean women: 2009 to 2011 Korea National Health and Nutrition Examination Surveys. J Clin Biochem Nutr 63:211–216. https://doi.org/10.3164/jcbn.18-10

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bae YJ (2020) Fruit intake and osteosarcopenic obesity in Korean postmenopausal women aged 50–64 years. Maturitas 134:41–46. https://doi.org/10.1016/j.maturitas.2020.02.003

    Article  CAS  PubMed  Google Scholar 

  31. Choi MK, Bae YJ (2020) Protein intake and osteosarcopenic adiposity in Korean adults aged 50 years and older. Osteoporos Int 31:2363–2372. https://doi.org/10.1007/s00198-020-05529-3

    Article  CAS  PubMed  Google Scholar 

  32. Cashman KD (2007) Diet, nutrition, and bone health. J Nutr 137:2507S-2512S. https://doi.org/10.1093/jn/137.11.2507S

    Article  CAS  PubMed  Google Scholar 

  33. Teegarden D, White KM, Lyle RM, Zemel MB, Van Loan MD, Matkovic V, Craig BA, Schoeller DA (2008) Calcium and dairy product modulation of lipid utilization and energy expenditure. Obesity (Silver Spring) 16:1566–1572. https://doi.org/10.1038/oby.2008.232

    Article  CAS  Google Scholar 

  34. Jacobsen R, Lorenzen JK, Toubro S, Krog-Mikkelsen I, Astrup A (2005) Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int J Obes (Lond) 29:292–301. https://doi.org/10.1038/sj.ijo.0802785

    Article  CAS  Google Scholar 

  35. Marques-Vidal P, Goncalves A, Dias CM (2006) Milk intake is inversely related to obesity in men and in young women: data from the Portuguese Health Interview Survey 1998–1999. Int J Obes (Lond) 30:88–93. https://doi.org/10.1038/sj.ijo.0803045

    Article  CAS  Google Scholar 

  36. Seo MH, Kim MK, Park SE, Rhee EJ, Park CY, Lee WY, Baek KH, Song KH, Kang MI, Oh KW (2013) The association between daily calcium intake and sarcopenia in older, non-obese Korean adults: the fourth Korea National Health and Nutrition Examination Survey (KNHANES IV) 2009. Endocr J 60:679–686. https://doi.org/10.1507/endocrj.ej12-0395

    Article  CAS  PubMed  Google Scholar 

  37. Beaudart C, Locquet M, Touvier M, Reginster JY, Bruyere O (2019) Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin Exp Res 31:815–824. https://doi.org/10.1007/s40520-019-01186-7

    Article  PubMed  Google Scholar 

  38. van Dronkelaar C, van Velzen A, Abdelrazek M, van der Steen A, Weijs PJM, Tieland M (2018) Minerals and sarcopenia; the role of calcium, iron, magnesium, phosphorus, potassium, selenium, sodium, and zinc on muscle mass, muscle strength, and physical performance in older adults: a systematic review. J Am Med Dir Assoc 19:6-11.e3. https://doi.org/10.1016/j.jamda.2017.05.026

    Article  PubMed  Google Scholar 

  39. Fagundes Belchior G, Kirk B, Pereira da Silva EA, Duque G (2020) Osteosarcopenia: beyond age-related muscle and bone loss. Eur Geriatr Med 11:715–724. https://doi.org/10.1007/s41999-020-00355-6

    Article  PubMed  Google Scholar 

  40. De Rui M, Inelmen EM, Pigozzo S, Trevisan C, Manzato E, Sergi G (2019) Dietary strategies for mitigating osteosarcopenia in older adults: a narrative review. Aging Clin Exp Res 31:897–903. https://doi.org/10.1007/s40520-019-01130-9

    Article  PubMed  Google Scholar 

  41. Calvo MS, Moshfegh AJ, Tucker KL (2014) Assessing the health impact of phosphorus in the food supply: issues and considerations. Adv Nutr 5:104–113. https://doi.org/10.3945/an.113.004861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT; Ministry of Science and ICT) (No. 2020R1F1A1072555).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Jung Bae.

Ethics declarations

Ethics approval

The KNHANES was reviewed and approved by the Ethics Committee of the Korea Centers for Disease Control and Prevention (KNHANES).

Consent to participate

All participants in the KNHANES survey provided informed consent.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, MK., Bae, YJ. Dietary calcium, phosphorus, and osteosarcopenic adiposity in Korean adults aged 50 years and older. Arch Osteoporos 16, 89 (2021). https://doi.org/10.1007/s11657-021-00961-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-021-00961-2

Keywords

Navigation