Skip to main content

Advertisement

Log in

Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To examine the anti-inflammatory effect of grape seed extract (GSE) in animal and cellular models and explore its mechanism of action.

Methods

This study determined the inhibitory effect of GSE on macrophage inflammation and Th1 and Th17 polarization in vitro. Based on the in vitro results, the effects and mechanisms of GSE on multiple sclerosis (MS)-experimental autoimmune encephalomyelitis (EAE) mice model were further explored. The C57BL/6 mice were intragastrically administered with 50 mg/kg of GSE once a day from the 3rd day to the 27th day after immunization. The activation of microglia, the polarization of Th1 and Th17 and the inflammatory factors such as tumor necrosis factor- α (TNF- α), interleukin-1 β (IL-1 β), IL-6, IL-12, IL-17 and interferon-γ (IFN-γ) secreted by them were detected in vitro and in vivo by flow cytometry, enzyme linked immunosorbent assay (ELISA), immunofluorescence staining and Western blot, respectively.

Results

GSE reduced the secretion of TNF-α, IL-1 β and IL-6 in bone marrow-derived macrophages stimulated by lipopolysaccharide (P<0.01), inhibited the secretion of TNF-α, IL-1 β, IL-6, IL-12, IL-17 and IFN-γ in spleen cells of EAE mice immunized for 9 days (P<0.05 or P<0.01), and reduced the differentiation of Th1 and Th17 mediated by CD3 and CD28 factors (P<0.01). GSE significantly improved the clinical symptoms of EAE mice, and inhibited spinal cord demyelination and inflammatory cell infiltration. Peripherally, GSE downregulated the expression of toll-like-receptor 4 (TLR4) and Rho-associated kinase (ROCKII, P<0.05 or P<0.01), and inhibited the secretion of inflammatory factors (P<0.01 or P<0.05). In the central nervous system, GSE inhibited the infiltration of CD45+CD11b+ and CD45+CD4+ cells, and weakened the differentiation of Th1 and Th17 (P<0.05). Moreover, it reduced the secretion of inflammatory factors (P<0.01), and prevented the activation of microglia (P<0.05).

Conclusion

GSE had a beneficial effect on the pathogenesis and progression of EAE by inhibiting inflammatory response as a potential drug and strategy for the treatment of MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Seifert HA, Benedek G, Nguyen H, Gerstner G, Zhang Y, Kent G, et al. Antibiotics protect against EAE by increasing regulatory and anti-inflammatory cells. Metab Brain Dis 2018;33:1599–1607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. De Nicola AF, Garay LI, Meyer M, Guennoun R, Sitruk-Ware R, Schumacher M, et al. Neurosteroidogenesis and progesterone anti-inflammatory/neuroprotective effects. J Neuroendocrinol 2018;30:12502.

    Article  Google Scholar 

  3. Escribano BM, Medina-Fernández FJ, Aguilar-Luque M, Agüera E, Feijoo M, Garcia-Maceira FI, et al. Lipopolysaccharide binding protein and oxidative stress in a multiple sclerosis model. Neurotherapeutics 2017;14:199–211.

    Article  CAS  PubMed  Google Scholar 

  4. Liu F, Li Z, He X, Yu H, Feng J. Ghrelin attenuates neuroinflammation and demyelination in experimental autoimmune encephalomyelitis involving NLRP3 inflammasome signaling pathway and pyroptosis. Front Pharmacol 2019;10:1320.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang L, Li L, Quan MY, Wang D, Jia Z, Li ZF, et al. Nordihydroguaiaretic acid can suppress progression of experimental autoimmune encephalomyelitis. IUBMB Life 2018;70:432–436.

    Article  CAS  PubMed  Google Scholar 

  6. Dang PT, Bui Q, D’Souza CS, Orian JM. Modelling MS: chronic-relapsing EAE in the NOD/Lt mouse strain. Curr Top Behav Neurosci 2015;23:143–177.

    Article  Google Scholar 

  7. Gholamzad M, Ebtekar M, Ardestani MS, Azimi M, Mahmodi Z, Mousavi MJ, et al. A comprehensive review on the treatment approaches of multiple sclerosis: currently and in the future. Inflamm Res 2019;68:25–38.

    Article  CAS  PubMed  Google Scholar 

  8. Adam SH, Giribabu N, Kassim N, Kumar KE, Brahmayya M, Arya A, et al. Protective effect of aqueous seed extract of Vitis Vinifera against oxidative stress, inflammation and apoptosis in the pancreas of adult male rats with diabetes mellitus. Biomed Pharmacother 2016;1:439–452.

    Article  Google Scholar 

  9. Aloui F, Charradi K, Hichami A, Subramaniam S, Khan NA, Limam F, et al. Grape seed and skin extract reduces pancreas lipotoxicity, oxidative stress and inflammation in high fat diet fed rats. Biomed Pharmacother 2016;84:2020–2028.

    Article  CAS  PubMed  Google Scholar 

  10. Kim H, Deshane J, Barnes S, Meleth S. Proteomics analysis of the actions of grape seed extract in rat brain: technological and biological implications for the study of the actions of psychoactive compounds. Life Sci 2006;78:2060–2065.

    Article  CAS  PubMed  Google Scholar 

  11. Sochorova L, Prusova B, Jurikova T, Mlcek J, Adamkova A, Baron M, et al. The study of antioxidant components in grape seeds. Molecules 2020;25:3736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yin W, Li B, Li X, Yu F, Cai Q, Zhang Z, et al. Anti-inflammatory effects of grape seed procyanidin B2 on a diabetic pancreas. Food Funct 2015;6:3065–3071.

    Article  CAS  PubMed  Google Scholar 

  13. Millan-Linares MC, Bermudez B, Martin ME, Muñoz E, Abia R, Millan F, et al. Unsaponifiable fraction isolated from grape (Vitis Vinifera l.) seed oil attenuates oxidative and inflammatory responses in human primary monocytes. Food Funct 2018;9:2517–2523.

    Article  CAS  PubMed  Google Scholar 

  14. Li YH, Xie C, Zhang Y, Li X, Zhang HF, Wang Q, et al. FSD-C10, a Fasudil derivative, promotes neuroregeneration through indirect and direct mechanisms. Sci Rep 2017;7:41227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Beeton C, Chandy KG. Solation of mononuclear cells from the central nervous system of rats with EAE. J Vis Exp 2007;10:527.

    Google Scholar 

  16. Michalski MN, Koh AJ, Weidner S, Roca H, McCauley LK. Modulation of osteoblastic cell efferocytosis by bone marrow macrophages. J Cell Biochem 2016;117:2697–2706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson MO, Wolf MM, Madden MZ, Andrejeva G, Sugiura A, Contreras DC, et al. Distinct regulation of Th17 and Th1 cell differentiation by glutaminase-dependent metabolism. Cell 2018;175:1780–1795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Choi JH, Oh J, Lee MJ, Bae H, Ko SG, Nah SY, et al. Inhibition of lysophosphatidic acid receptor 1–3 deteriorates experimental autoimmune encephalomyelitis by inducing oxidative stress. J Neuroinflammation 2021;18:240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hemmati S, Sadegh MA, Yousefi MH, Eslamiyeh M, Vafaei A, Foroutani L, et al. Protective effects of leukadherin1 in a rat model of targeted experimental autoimmune encephalomyelitis (EAE): possible role of P47phox and MDA downregulation. J Inflamm Res 2020;13:411–420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu Y, Wu DM, Li J, Deng SH, Liu T, Zhang T, et al. Bixin attenuates experimental autoimmune encephalomyelitis by suppressing TXNIP/NLRP3 inflammasome activity and activating NRF2 signaling. Front Immunol 2020;11:593368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cantoni C, Cignarella F, Ghezzi L, Mikesell B, Bollman B, Berrien-Elliott MM, et al. Mir-223 regulates the number and function of myeloid-derived suppressor cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol 2017;133:61–77.

    Article  CAS  PubMed  Google Scholar 

  22. Melero-Jerez C, Suardíaz M, Lebrón-Galán R, Marín-Bañasco C, Oliver-Martos B, Machín-Díaz I, et al. The presence and suppressive activity of myeloid-derived suppressor cells are potentiated after interferon- β treatment in a murine model of multiple sclerosis. Neurobiol Dis 2019;127:13–31.

    Article  CAS  PubMed  Google Scholar 

  23. McGinley AM, Sutton CE, Edwards SC, Leane CM, DeCourcey J, Teijeiro A, et al. Interleukin-17A serves a priming role in autoimmunity by recruiting IL-1 β-producing myeloid cells that promote pathogenic T cells. Immunity 2020;52:342–356.

    Article  CAS  PubMed  Google Scholar 

  24. Kleine TO, Zwerenz P, Graser C, Zöfel P. Approach to discriminate subgroups in multiple sclerosis with cerebrospinal fluid (CSF) basic inflammation indices and TNF-α, IL-1β, IL-6, IL-8. Brain Res Bull 2003;61:327–346.

    Article  CAS  PubMed  Google Scholar 

  25. Shapouri-Moghaddam A, Mohammadian S, Vazini H, Taghadosi M, Esmaeili SA, Mardani F, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018;233:6425–6440.

    Article  CAS  PubMed  Google Scholar 

  26. Haghmorad D, Yazdanpanah E, Jadid Tavaf M, Zargarani S, Soltanmohammadi A, Mahmoudi MB, et al. Prevention and treatment of experimental autoimmune encephalomyelitis induced mice with 1, 25-dihydroxyvitamin D3. Neurol Res 2019;41:943–957.

    Article  CAS  PubMed  Google Scholar 

  27. Anaparti V, Pascoe CD, Jha A, Mahood TH, Ilarraza R, Unruh H, et al. Tumor necrosis factor regulates NMDA receptor-mediated airway smooth muscle contractile function and airway responsiveness. Am J Physiol Lung Cell Mol Physiol 2016;311:L467–L480.

    Article  PubMed  Google Scholar 

  28. Noda M. Dysfunction of glutamate receptors in microglia may cause neurodegeneration. Curr Alzheimer Res 2016;13:381–386.

    Article  CAS  PubMed  Google Scholar 

  29. Olmos G, Lladó J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014;2014:861231.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Oberstein TJ, Taha L, Spitzer P, Hellstern J, Herrmann M, Kornhuber J, et al. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s disease: a case control study. Front Immunol 2018;9:1213.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Grifka-Walk HM, Giles DA, Segal BM. IL-12-polarized Th1 cells produce GM-CSF and induce EAE independent of IL-23. Eur J Immunol 2015;45:2780–2786.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bai Z, Chen D, Wang L, Zhao Y, Liu T, Yu Y, et al. Cerebrospinal fluid and blood cytokines as biomarkers for multiple sclerosis: a systematic review and meta-analysis of 226 studies with 13,526 multiple sclerosis patients. Front Neurosci 2019;13:1026.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Broux B, Mizee MR, Vanheusden M, van der Pol S, van Horssen J, Van Wijmeersch B, et al. IL-15 amplifies the pathogenic properties of CD4+ CD28 T cells in multiple sclerosis. Immunol 2015;194:2099–2109.

    CAS  Google Scholar 

  34. Zhao L, Hu B, Zhang Y, Song Y, Lin D, Liu Y, et al. An activation-induced IL-15 isoform is a natural antagonist for IL-15 function. Sci Rep 2016;6:25822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L. T helper cells: the modulators of inflammation in multiple sclerosis. Cells 2020;9:482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McGinley AM, Edwards SC, Raverdeau M, Mills KHG. Th17 cells, γ δ T cells and their interplay in EAE and multiple sclerosis. J Autoimmun 2018; S0896-8411(18)30007-6. Epub ahead of print

  37. Kang Z, Wang C, Zepp J, Wu L, Sun K, Zhao J, et al. Act1 mediates IL-17-induced EAE pathogenesis selectively in NG2+ glial cells. Nat Neurosci 2013;16:1401–1408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dungan LS, Mcguinness NC, Boon L, Lynch MA, Mills KHG. Innate IFN-γ promotes development of experimental autoimmune encephalomyelitis: a role for NK cells and M1 macrophages. Eur J Immunol 2014;44:2903–2917.

    Article  CAS  PubMed  Google Scholar 

  39. Sulaimani J, Cluxton D, Clowry J, Petrasca A, Molloy OE, Moran B, et al. Dimethyl fumarate modulates the Treg-Th17 cell axis in patients with psoriasis. Br J Dermatol 2021;184:495–503.

    Article  CAS  PubMed  Google Scholar 

  40. Wu Q, Wang Q, Mao G, Dowling CA, Lundy SK, Mao-Draayer Y. Dimethyl fumarate selectively reduces memory T cells and shifts the balance between Th1/Th17 and Th2 in multiple sclerosis patients. J Immunol 2017;198:3069–3080.

    Article  CAS  PubMed  Google Scholar 

  41. Gu SM, Park MH, Yun HM, Han SB, Oh KW, Son DJ, et al. CCR5 knockout suppresses experimental autoimmune encephalomyelitis in C57BL/6 mice. Oncotarget 2016;7:15382–15393.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Liu Y, Holdbrooks AT, Meares GP, Buckley JA, Benveniste EN, Qin H. Preferential recruitment of neutrophils into the cerebellum and brainstem contributes to the atypical experimental autoimmune encephalomyelitis phenotype. J Immunol 2015;195:841–852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fischer FR, Santambrogio L, Luo Y, Berman MA, Hancock WW, Dorf ME. Modulation of experimental autoimmune encephalomyelitis: effect of altered peptide ligand on chemokine and chemokine receptor expression. J Neuroimmunol 2000;110:195–208.

    Article  CAS  PubMed  Google Scholar 

  44. Lengfeld JE, Lutz SE, Smith JR, Diaconu C, Scott C, Kofman SB, et al. Endothelial Wnt/β-catenin signaling reduces immune cell infiltration in multiple sclerosis. Proc Natl Acad Sci U S A 2017;114:E1168–E1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim JH, Chung DH. CD1d-restricted IFN-γ-secreting NKT cells promote immune complex-induced acute lung injury by regulating macrophage-inflammatory protein-1α production and activation of macrophages and dendritic cells. J Immunol 2011;186:1432–1441.

    Article  CAS  PubMed  Google Scholar 

  46. Ibrahim SH, EMehdawy KM, Seleem M, El-Sawalhi MM, Shaheen AA. Serum ROCK2, miR-300 and miR-450b-5p levels in two different clinical phenotypes of multiple sclerosis: relation to patient disability and disease progression. J Neuroimmunol 2020;347:577356.

    Article  CAS  PubMed  Google Scholar 

  47. Gao Y, Yan Y, Fang Q, Zhang N, Kumar G, Zhang J. The Rho kinase inhibitor fasudil attenuates Aβ 1-42-induced apoptosis via the ASK1/JNK signal pathway in primary cultures of hippocampal neurons. J Metab Brain Dis 2019;34:1787–1801.

    Article  CAS  Google Scholar 

  48. Wang J, Zhang Y, Guo LL, Wu GJ, Liu RH. Salvianolic acid B inhibits the TLR4-NF kappa B-TNF alpha pathway and attenuates neonatal rat cardiomyocyte injury induced by lipopolysaccharide. Chin J Integr Med 2011;17:775–779.

    Article  CAS  PubMed  Google Scholar 

  49. Asadzadeh MF, Yousefi AA, Kazemi AM. The roles played by TLR4 in the pathogenesis of multiple sclerosis; a systematic review article. J Immunol Lett 2020;220:63–70.

    Article  Google Scholar 

  50. Bu Y, Li WS, Lin J, Wei YW, Sun QY, Zhu SJ, et al. Electroacupuncture attenuates immune-inflammatory response in hippocampus of rats with vascular dementia by inhibiting TLR4/MyD88 signaling pathway. Chin J Integr Med 2021;28:153–161.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wang Q and Yang ZC completed most of the work together and wrote the manuscript. Ma CG and Xiao BG helped coordinate and draft the manuscript. Miao Q, Chen YY and Dong YW mainly assisted in cell experiment. Li YQ and Wang J mainly assisted in animal experiments. Yuan HJ and Yu JZ were involved in the revisions. Ma CG and Xiao BG revised and finalized the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Cun-gen Ma.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Supported by the National Natural Science Foundation of China (No. 81903596), Science and Technology Innovation Project of Shanxi Colleges (No. 2019L0728), Leading Team of Medical Science and Technology of Shanxi Province (No. 2020TD05), Funds for Construction of Key Disciplines from Shanxi University of Chinese Medicine (No. 030200117), Cultivation Project of Shanxi University of Chinese Medicine (Nos. 2019PY130 and 2020PY-JC-14)

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Chen, Yy., Yang, Zc. et al. Grape Seed Extract Attenuates Demyelination in Experimental Autoimmune Encephalomyelitis Mice by Inhibiting Inflammatory Response of Immune Cells. Chin. J. Integr. Med. 29, 394–404 (2023). https://doi.org/10.1007/s11655-022-3587-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-022-3587-7

Keywords

Navigation